Existence results for the 1-Laplacian problem with a critical concave-convex nonlinearity

被引:0
|
作者
Pimenta, Marcos T. O. [1 ]
Carranza, Yino B. C. [2 ]
Figueiredo, Giovany M. [3 ]
机构
[1] Univ Estadual Paulista Unesp, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[2] UNESP, Inst Biociencias Letras & Ciencias Exatas IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
1-Laplacian operator; singular nonlinearity; critical growth; MULTIPLE POSITIVE SOLUTIONS; LINEAR ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; SOBOLEV;
D O I
10.1007/s11784-024-01138-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a critical concave-convex type problem involving the 1-Laplacian operator in a general Lipschitz-continuous domain. We show an existence result using an approximation method, in which the solution is obtained as limit of solutions to p-Laplacian type problems. To overcome the lack of compactness, a version of the well-known Concentration Compactness Principle of Lions is used.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities
    Daoues, A.
    Hammami, A.
    Saoudi, K.
    MATHEMATICAL NOTES, 2021, 109 (1-2) : 192 - 207
  • [22] On multiple solutions to a nonlocal fractional p(.)-Laplacian problem with concave-convex nonlinearities
    Lee, Jongrak
    Kim, Jae-Myoung
    Kim, Yun-Ho
    Scapellato, Andrea
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022
  • [23] EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM
    谢君辉
    黄孝忠
    陈以平
    Acta Mathematica Scientia, 2018, (06) : 1821 - 1832
  • [24] EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM
    谢君辉
    黄孝忠
    陈以平
    Acta Mathematica Scientia(English Series), 2018, 38 (06) : 1821 - 1832
  • [25] EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM
    Xie, Junhui
    Huang, Xiaozhong
    Chen, Yiping
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1821 - 1832
  • [26] Existence and multiplicity of solutions to fractional p-Laplacian systems with concave-convex nonlinearities
    Alsulami, Hamed
    Kirane, Mokhtar
    Alhodily, Shabab
    Saeed, Tareq
    Nyamoradi, Nemat
    BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (01)
  • [27] Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities
    A. Daoues
    A. Hammami
    K. Saoudi
    Mathematical Notes, 2021, 109 : 192 - 207
  • [28] Existence of a radial solution to a 1-Laplacian problem in RN
    Zhou, Fen
    Shen, Zifei
    APPLIED MATHEMATICS LETTERS, 2021, 118 (118)
  • [29] Existence and non-existence results for a class of systems under concave-convex nonlinearities
    Da Silva, Joao Pablo Pinheiro
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025, 68 (01) : 128 - 156
  • [30] EXISTENCE OF SOLUTIONS TO A GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION WITH A POTENTIAL AND CONCAVE-CONVEX NONLINEARITY
    Chen, Jiaoping
    Chen, Jianqing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1820 - 1830