共 50 条
Existence results for the 1-Laplacian problem with a critical concave-convex nonlinearity
被引:0
|作者:
Pimenta, Marcos T. O.
[1
]
Carranza, Yino B. C.
[2
]
Figueiredo, Giovany M.
[3
]
机构:
[1] Univ Estadual Paulista Unesp, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[2] UNESP, Inst Biociencias Letras & Ciencias Exatas IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词:
1-Laplacian operator;
singular nonlinearity;
critical growth;
MULTIPLE POSITIVE SOLUTIONS;
LINEAR ELLIPTIC-EQUATIONS;
DIRICHLET PROBLEM;
SOBOLEV;
D O I:
10.1007/s11784-024-01138-3
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we study a critical concave-convex type problem involving the 1-Laplacian operator in a general Lipschitz-continuous domain. We show an existence result using an approximation method, in which the solution is obtained as limit of solutions to p-Laplacian type problems. To overcome the lack of compactness, a version of the well-known Concentration Compactness Principle of Lions is used.
引用
收藏
页数:24
相关论文