Bppfl: a blockchain-based framework for privacy-preserving federated learning

被引:0
|
作者
Asad, Muhammad [1 ]
Otoum, Safa [1 ]
机构
[1] Zayed Univ, Dept Technol Innovat, Abu Dhabi 144534, U Arab Emirates
关键词
Federated learning; Blockchain; Privacy-preserving; Pallier encryption;
D O I
10.1007/s10586-024-04834-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] BPFL: A Blockchain Based Privacy-Preserving Federated Learning Scheme
    Wang, Naiyu
    Yang, Wenti
    Guan, Zhitao
    Du, Xiaojiang
    Guizani, Mohsen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [22] A Blockchain-based Privacy-preserving Auditable Data Structure Framework
    Tortola, Domenico
    Felicioli, Claudio
    Canciani, Andrea
    Severino, Fabio
    2024 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN, BLOCKCHAIN 2024, 2024, : 1 - 10
  • [23] Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain
    Zhou W.
    Wang C.
    Xu J.
    Hu K.
    Wang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (11): : 2423 - 2436
  • [24] Privacy-Preserving Framework for Blockchain-Based Stock Exchange Platform
    Al-Shaibani, Hamed
    Lasla, Noureddine
    Abdallah, Mohamed
    Bakiras, Spiridon
    IEEE ACCESS, 2022, 10 : 1202 - 1215
  • [25] A privacy-preserving and verifiable federated learning method based on blockchain
    Fang, Chen
    Guo, Yuanbo
    Ma, Jiali
    Xie, Haodong
    Wang, Yifeng
    COMPUTER COMMUNICATIONS, 2022, 186 : 1 - 11
  • [26] Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework using the Blockchain
    Awan, Sana
    Li, Fengjun
    Luo, Bo
    Liu, Mei
    PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, : 2561 - 2563
  • [27] A novel blockchain-based privacy-preserving framework for online social networks
    Zhang, Shiwen
    Yao, Tingting
    Sandor, Voundi Koe Arthur
    Weng, Tien-Hsiung
    Liang, Wei
    Su, Jinshu
    CONNECTION SCIENCE, 2021, 33 (03) : 555 - 575
  • [28] Asynchronous Blockchain-based Privacy-preserving Training Framework for Disease Diagnosis
    Chen, Xuhui
    Wang, Xufei
    Yang, Kun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5469 - 5473
  • [29] A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
    Naiyu Wang
    Wenti Yang
    Xiaodong Wang
    Longfei Wu
    Zhitao Guan
    Xiaojiang Du
    Mohsen Guizani
    Digital Communications and Networks, 2024, 10 (01) : 126 - 134
  • [30] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices (vol 8, pg 1817, 2020)
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01): : 973 - 973