A Three-Parameter Problem for Fractional Differential Equation with an Abstract Operator

被引:0
|
作者
R. R. Ashurov [1 ]
N. Sh. Nuraliyeva [1 ]
机构
[1] Romanovskii Institute of Mathematics,
[2] Academy of Sciences of the Republic of Uzbekistan,undefined
关键词
Fourier method; subdiffusion equation; three-parameter nonlocal problems; Caputo derivatives;
D O I
10.1134/S1995080224606787
中图分类号
学科分类号
摘要
引用
收藏
页码:5788 / 5801
页数:13
相关论文
共 50 条
  • [21] Parameter Identification Problem for the Abstract State-Dependent Delay Differential Equation
    Ruhil, Santosh
    Malik, Muslim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [23] Recent advances on solving the three-parameter infiltration equation
    Swamee, Prabhata K.
    Rathie, Pushpa N.
    Ozelim, Luan Carlos de S. M.
    Cavalcante, Andre L. B.
    JOURNAL OF HYDROLOGY, 2014, 509 : 188 - 192
  • [24] On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator
    Sousa, Jose Vanterler da C.
    Kucche, Kishor D.
    de Oliveira, Edmundo Capelas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) : 3021 - 3032
  • [25] Inverse Problem for a Fourth-Order Differential Equation with the Fractional Caputo Operator
    Durdiev, U. D.
    Rahmonov, A. A.
    RUSSIAN MATHEMATICS, 2024, 68 (09) : 18 - 28
  • [26] Integrated Fractional Resolvent Operator Function and Fractional Abstract Cauchy Problem
    Li, Ya-Ning
    Sun, Hong-Rui
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] Abstract Cauchy problem for fractional differential equations
    JinRong Wang
    Yong Zhou
    Michal Fec̆kan
    Nonlinear Dynamics, 2013, 71 : 685 - 700
  • [28] Abstract Cauchy problem for fractional differential equations
    Wang, JinRong
    Zhou, Yong
    Feckan, Michal
    NONLINEAR DYNAMICS, 2013, 71 (04) : 685 - 700
  • [29] Positive Solutions for Three-Point Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator
    Yao, Shang-lin
    Wang, Guo-hui
    Li, Zhi-ping
    Yu, Li-jun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [30] DIFFERENTIAL EQUATION WITH ABSTRACT ELLIPTICAL OPERATOR IN HILBERT SPACE
    KREIN, SG
    SOBOLEVSKY, PE
    DOKLADY AKADEMII NAUK SSSR, 1958, 118 (02): : 233 - 236