A Method for Bounding Oscillatory Integrals in Terms of Non-oscillatory Integrals

被引:0
|
作者
Greenblatt, Michael [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Sci & Engn Off 322, 851 S Morgan St, Chicago, IL 60607 USA
关键词
Oscillatory integral; ALGEBRAIC VARIETY; SINGULARITIES; RESOLUTION; FIELD;
D O I
10.1007/s12220-025-01966-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an elementary method for bounding a one-dimensional oscillatory integral in terms of an associated non-oscillatory integral. The bounds obtained are efficient in an appropriate sense and behave well under perturbations of the phase. As a consequence, for an n-dimensional oscillatory integral with a critical point at the origin, we may apply the one-dimensional estimates in the radial direction and then integrate the result, thereby obtaining a natural bound for the n-dimensional oscillatory integral in terms of an analogous associated non-oscillatory integral. To illustrate, we provide several classes of examples, including situations where the phase function has a critical point at which it vanishes to infinite order.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] ON THE AVERAGE OPERATORS, OSCILLATORY INTEGRALS, SINGULAR INTEGRALS AND THEIR APPLICATIONS
    Shi, Shaoguang
    Fu, Zunwei
    Wu, Qingyan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (01): : 334 - 378
  • [22] Experimental computation with oscillatory integrals
    Bailey, David H.
    Borwein, Jonathan M.
    GEMS IN EXPERIMENTAL MATHEMATICS, 2010, 517 : 25 - +
  • [23] Some phases of oscillatory integrals
    V. N. Karpushkin
    Functional Analysis and Its Applications, 2011, 45
  • [24] Shifted GMRES for oscillatory integrals
    Olver, Sheehan
    NUMERISCHE MATHEMATIK, 2010, 114 (04) : 607 - 628
  • [25] Oscillatory integrals and fractal dimension
    Rolin, Jean-Philippe
    Vlah, Domagoj
    Zupanovic, Vesna
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168
  • [26] MORE ON THE CALCULATION OF OSCILLATORY INTEGRALS
    FETTIS, HE
    PEXTON, RL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) : 473 - 476
  • [27] EVALUATION OF INTEGRALS WITH OSCILLATORY INTEGRANDS
    PANTIS, G
    JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (02) : 229 - 233
  • [28] Automatic computing of oscillatory integrals
    Majidian, Hassan
    NUMERICAL ALGORITHMS, 2018, 77 (03) : 867 - 884
  • [29] OSCILLATORY INTEGRALS WITH POLYNOMIAL PHASES
    PHONG, DH
    STEIN, EM
    INVENTIONES MATHEMATICAE, 1992, 110 (01) : 39 - 62
  • [30] ON A STOPPING PROCESS FOR OSCILLATORY INTEGRALS
    PHONG, DH
    STEIN, EM
    JOURNAL OF GEOMETRIC ANALYSIS, 1994, 4 (01) : 105 - 120