A groupwise multiresolution network for DCE-MRI image registration

被引:0
|
作者
Strittmatter, Anika [1 ,2 ]
Weis, Meike [3 ]
Zoellner, Frank G. [1 ,2 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, Comp Assisted Clin Med, Theodor Kutzer Ufer 1-3, D-68167 Mannheim, Germany
[2] Heidelberg Univ, Med Fac Mannheim, Mannheim Inst Intelligent Syst Med, Theodor Kutzer Ufer 1-3, D-68167 Mannheim, Germany
[3] Heidelberg Univ, Med Fac Mannheim, Univ Med Ctr Mannheim, Dept Clin Radiol & Nucl Med, Theodor Kutzer Ufer 1-3, D-68167 Mannheim, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Deep learning; Image registration; Machine learning; Medical images; Groupwise; Multiresolution; 2-YEAR-OLD CHILDREN;
D O I
10.1038/s41598-025-94275-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In four-dimensional time series such as dynamic contrast-enhanced (DCE) MRI, motion between individual time steps due to the patient's breathing or movement leads to incorrect image analysis, e.g., when calculating perfusion. Image registration of the volumes of the individual time steps is necessary to improve the accuracy of the subsequent image analysis. Both groupwise and multiresolution registration methods have shown great potential for medical image registration. To combine the advantages of groupwise and multiresolution registration, we proposed a groupwise multiresolution network for deformable medical image registration. We applied our proposed method to the registration of DCE-MR images for the assessment of lung perfusion in patients with congenital diaphragmatic hernia. The networks were trained unsupervised with Mutual Information and Gradient L2 loss. We compared the groupwise networks with a pairwise deformable registration network and a published groupwise network as benchmarks and the classical registration method SimpleElastix as baseline using four-dimensional DCE-MR scans of patients after congenital diaphragmatic hernia repair. Experimental results showed that our groupwise network yields results with high spatial alignment (SSIM up to 0.953 +/- 0.025 or 0.936 +/- 0.028 respectively), medically plausible transformation with low image folding (|J| <= 0: 0.0 +/- 0.0%), and a low registration time of less than 10 seconds for a four-dimensional DCE-MR scan with 50 time steps. Furthermore, our results demonstrate that image registration with the proposed groupwise network enhances the accuracy of medical image analysis by leading to more homogeneous perfusion maps.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Registration of Abdominal Tumor DCE-MRI Data Based on Deconvolution of Joint Statistics
    Pilutti, David
    Buechert, Martin
    Hadjidemetriou, Stathis
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2611 - 2614
  • [22] MULTIVARIATE MATHEMATICAL MORPHOLOGY FOR DCE-MRI IMAGE ANALYSIS IN ANGIOGENESIS STUDIES
    Noyel, Guillaume
    Angulo, Jesus
    Jeulin, Dominique
    Balvay, Daniel
    Cuenod, Charles Andre
    IMAGE ANALYSIS & STEREOLOGY, 2015, 34 (01): : 1 - 25
  • [23] Segmentation-Driven Image Registration-Application to 4D DCE-MRI Recordings of the Moving Kidneys
    Hodneland, Erlend
    Hanson, Erik A.
    Lundervold, Arvid
    Modersitzki, Jan
    Eikefjord, Eli
    Munthe-Kaas, Antonella Z.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (05) : 2392 - 2404
  • [24] Image analysis of renal DCE-MRI for the detection of acute renal rejection
    El-Baz, Ayman
    Farag, Aly
    Fahmi, Rachid
    Yuksela, Seniha
    El-Ghar, Mohamed A.
    Eldiasty, Tarek
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 822 - +
  • [25] DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker
    Chen, Bang-Bin
    Shih, Tiffany Ting-Fang
    WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (12) : 3125 - 3134
  • [26] DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker
    Bang-Bin Chen
    Tiffany Ting-Fang Shih
    World Journal of Gastroenterology, 2014, 20 (12) : 3125 - 3134
  • [27] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [28] Quantification of Tumor Changes during Neoadjuvant Chemotherapy with Longitudinal Breast DCE-MRI Registration
    Wu, Jia
    Ou, Yangming
    Weinstein, Susan P.
    Conant, Emily F.
    Yu, Ning
    Hoshmand, Vahid
    Keller, Brad
    Ashraf, Ahmed B.
    Rosen, Mark
    DeMichele, Angela
    Davatzikos, Christos
    Kontos, Despina
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [29] An artificial neural network for GFR estimation in the DCE-MRI studies of the kidneys
    Strzelecki, Michal
    Klepaczko, Artur
    Muszelska, Martyna
    Eikefjord, Eli
    Rorvik, Jarle
    Lundervold, Arvid
    2018 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2018, : 286 - 291
  • [30] Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI
    Hamy, Valentin
    Dikaios, Nikolaos
    Punwani, Shonit
    Melbourne, Andrew
    Latifoltojar, Arash
    Makanyanga, Jesica
    Chouhan, Manil
    Helbren, Emma
    Menys, Alex
    Taylor, Stuart
    Atkinson, David
    MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 301 - 313