Introduction to this special section: Generative and physics-informed AI

被引:0
|
作者
Ovcharenko, Oleg [1 ]
Di, Haibin [2 ]
Waheed, Umair Bin [3 ]
Kazei, Vladimir [4 ]
机构
[1] NVIDIA, Dubai, United Arab Emirates
[2] SLB, Houston,TX, United States
[3] King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
[4] Aramco Americas, Houston,TX, United States
来源
Leading Edge | 2025年 / 44卷 / 02期
关键词
D O I
10.1190/tle44020078.1
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Introduction to this special section: Machine learning and AI
    Brusova, Olga
    Corzo, Margarita
    Pyrcz, Michael J.
    Leading Edge, 2020, 39 (10):
  • [32] Indeterminacy after AI: Introduction to Special Section
    Lushetich, Natasha
    Campbell, Iain D.
    LEONARDO, 2023, 56 (01) : 43 - 44
  • [33] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [34] PHYSICS-INFORMED DATA AUGMENTATION OF EXPERIMENTAL EROSION DATA THROUGH GENERATIVE ADVERSARIAL NETWORKS
    Zhang, Jun
    Li, Jamie
    Pei, Weiping
    Shirazi, Siamack
    PROCEEDINGS OF ASME 2024 FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2, FEDSM 2024, 2024,
  • [35] Physics-informed recurrent super-resolution generative reconstruction in rotating detonation combustor
    Wang, Xutun
    Wen, Haocheng
    Wen, Quan
    Wang, Bing
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [36] Physics-Informed Graph Capsule Generative Autoencoder for Probabilistic AC Optimal Power Flow
    Saffari, Mohsen
    Khodayar, Mahdi
    Khodayar, Mohammad E.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3382 - 3395
  • [37] PIX-GAN: Enhance Physics-Informed Estimation via Generative Adversarial Network
    Li, Haoran
    Weng, Yang
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1085 - 1090
  • [38] FWIGAN: Full-Waveform Inversion via a Physics-Informed Generative Adversarial Network
    Yang, Fangshu
    Ma, Jianwei
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2023, 128 (04)
  • [39] GENERATIVE ENSEMBLE REGRESSION: LEARNING PARTICLE DYNAMICS FROM OBSERVATIONS OF ENSEMBLES WITH PHYSICS-INFORMED DEEP GENERATIVE MODELS
    Yang, Liu
    Daskalakis, Constantinos
    Karniadakis, George E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : B80 - B99
  • [40] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,