Multi-step solar ultraviolet index prediction: integrating convolutional neural networks with long short-term memory for a representative case study in Queensland, Australia

被引:0
|
作者
Al-Musaylh, Mohanad S. [1 ]
Al-Daffaie, Kadhem [2 ]
Downs, Nathan [3 ]
Ghimire, Sujan [3 ]
Ali, Mumtaz [3 ]
Yaseen, Zaher Mundher [4 ]
Igoe, Damien P. [3 ]
Deo, Ravinesh C. [3 ]
Parisi, Alfio V. [3 ]
Jebar, Mustapha A. A. [5 ,6 ]
机构
[1] Southern Tech Univ, Management Tech Coll, Basrah, Iraq
[2] Al Muthanna Univ, Samawah, Iraq
[3] Univ Southern Queensland, Toowoomba, Australia
[4] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[5] Univ Thi Qar, Thi Qar, Iraq
[6] Al Ayen Iraqi Univ, Thi Qar, Iraq
关键词
Artificial intelligence; Decision making; Intelligent risk alarm; Deep learning; Solar predicted models; Ultraviolet radiation; RADIATION PREDICTION; UV; SATELLITE;
D O I
10.1007/s40808-024-02282-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The impact of solar ultraviolet (UV) radiation on public health is severe and can cause sunburn, skin aging and cancer, immunosuppression, and eye damage. Minimization of exposure to solar UV is required in order to reduce the risks of these illnesses to the public. Greater public awareness and the prediction of ultraviolet index (UVI) is considered an essential task for the minimization of solar UV exposures. This research has designed an artificial intelligence (AI) model to predict the multistep solar UVI. The proposed model was based on the integration of convolutional neural networks with long short-term memory network (CLSTM) as the primary model to predict solar UVI, tested for Brisbane (27.47 degrees S, 153.02 degrees E), the capital city in Queensland, Australia. Solar zenith angle (SZA) data were used together with UVI as inputs for the CLSTM of different scales (i.e., 10-min, 30-min, and 60-min) UVI prediction. The CLSTM model was benchmarked against well-established AI models e.g., long short-term memory network (LSTM), convolutional neural network (CNN), Deep Neural Network (DNN), multilayer perceptron (MLP), extreme learning machine (ELM), random forest regression (RFR), Extreme Gradient Boosting (XGB), and Pro6UV Deterministic models. The experimental results showed that the CLSTM model outperformed these models with Root Mean Square Error (RMSE = 0.3817), Mean Absolute Error (MAE = 0.1887), and Relative Root Mean Square Error (RRMSE = 8.0086%), for 10-min prediction. Whereas, for 30-min and 60-min prediction were RMSE = 0.4866/0.5146, MAE = 0.2763/0.3038, RRMSE = 10.4860%/11.5840%, respectively. The research finding confirmed the potential of the proposed data-intelligent model (i.e., CLSTM) can yield improved UVI prediction for both the public and the government agencies.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] An analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for gesture recognition
    Tsironi, Eleni
    Barros, Pablo
    Weber, Cornelius
    Wermter, Stefan
    NEUROCOMPUTING, 2017, 268 : 76 - 86
  • [32] Long Short-Term Memory Neural Networks for RNA Viruses Mutations Prediction
    Mohamed, Takwa
    Sayed, Sabah
    Salah, Akram
    Houssein, Essam H.
    Mathematical Problems in Engineering, 2021, 2021
  • [33] Stock price trend prediction with long short-term memory neural networks
    Department of Computer Science and Engineering, Chandigarh College of Engineering and Technology, Sector 26, Chandigarh
    160019, India
    Int. J. Comput. Intell. Stud., 2019, 4 (289-298): : 289 - 298
  • [34] Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: A comparative study
    Granata, Francesco
    Di Nunno, Fabio
    de Marinis, Giovanni
    JOURNAL OF HYDROLOGY, 2022, 613
  • [35] Long Short-Term Memory Neural Networks for RNA Viruses Mutations Prediction
    Mohamed, Takwa
    Sayed, Sabah
    Salah, Akram
    Houssein, Essam H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [36] A Comparative Review of Convolutional Neural Networks, Long Short-Term Memory, and Recurrent Neural Networks in Recommendation Systems
    Tyagi, Geetanjali
    Ray, Susmita
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 395 - 408
  • [37] Multi-Scale Convolutional Neural Network With Time-Cognition for Multi-Step Short-Term Load Forecasting
    Deng, Zhuofu
    Wang, Binbin
    Xu, Yanlu
    Xu, Tengteng
    Liu, Chenxu
    Zhu, Zhiliang
    IEEE ACCESS, 2019, 7 : 88058 - 88071
  • [38] Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks
    Liu, Jingjing
    Wang, Lei
    Hu, Fengjun
    Xu, Ping
    Zhang, Denghui
    WATER, 2024, 16 (12)
  • [39] Convolutional Neural Networks and Long Short-Term Memory Networks for Textual Classification of Information Access Requests
    Paiva, E. S.
    Paim, A. B.
    Ebecken, N. F. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (05) : 826 - 833
  • [40] Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks
    Lee, Woonghee
    Kim, Keonwoo
    Park, Junsep
    Kim, Jinhee
    Kim, Younghoon
    IEEE ACCESS, 2018, 6 : 73068 - 73080