Multi-step solar ultraviolet index prediction: integrating convolutional neural networks with long short-term memory for a representative case study in Queensland, Australia

被引:0
|
作者
Al-Musaylh, Mohanad S. [1 ]
Al-Daffaie, Kadhem [2 ]
Downs, Nathan [3 ]
Ghimire, Sujan [3 ]
Ali, Mumtaz [3 ]
Yaseen, Zaher Mundher [4 ]
Igoe, Damien P. [3 ]
Deo, Ravinesh C. [3 ]
Parisi, Alfio V. [3 ]
Jebar, Mustapha A. A. [5 ,6 ]
机构
[1] Southern Tech Univ, Management Tech Coll, Basrah, Iraq
[2] Al Muthanna Univ, Samawah, Iraq
[3] Univ Southern Queensland, Toowoomba, Australia
[4] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[5] Univ Thi Qar, Thi Qar, Iraq
[6] Al Ayen Iraqi Univ, Thi Qar, Iraq
关键词
Artificial intelligence; Decision making; Intelligent risk alarm; Deep learning; Solar predicted models; Ultraviolet radiation; RADIATION PREDICTION; UV; SATELLITE;
D O I
10.1007/s40808-024-02282-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The impact of solar ultraviolet (UV) radiation on public health is severe and can cause sunburn, skin aging and cancer, immunosuppression, and eye damage. Minimization of exposure to solar UV is required in order to reduce the risks of these illnesses to the public. Greater public awareness and the prediction of ultraviolet index (UVI) is considered an essential task for the minimization of solar UV exposures. This research has designed an artificial intelligence (AI) model to predict the multistep solar UVI. The proposed model was based on the integration of convolutional neural networks with long short-term memory network (CLSTM) as the primary model to predict solar UVI, tested for Brisbane (27.47 degrees S, 153.02 degrees E), the capital city in Queensland, Australia. Solar zenith angle (SZA) data were used together with UVI as inputs for the CLSTM of different scales (i.e., 10-min, 30-min, and 60-min) UVI prediction. The CLSTM model was benchmarked against well-established AI models e.g., long short-term memory network (LSTM), convolutional neural network (CNN), Deep Neural Network (DNN), multilayer perceptron (MLP), extreme learning machine (ELM), random forest regression (RFR), Extreme Gradient Boosting (XGB), and Pro6UV Deterministic models. The experimental results showed that the CLSTM model outperformed these models with Root Mean Square Error (RMSE = 0.3817), Mean Absolute Error (MAE = 0.1887), and Relative Root Mean Square Error (RRMSE = 8.0086%), for 10-min prediction. Whereas, for 30-min and 60-min prediction were RMSE = 0.4866/0.5146, MAE = 0.2763/0.3038, RRMSE = 10.4860%/11.5840%, respectively. The research finding confirmed the potential of the proposed data-intelligent model (i.e., CLSTM) can yield improved UVI prediction for both the public and the government agencies.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multi-step prediction for influenza outbreak by an adjusted long short-term memory
    Zhang, J.
    Nawata, K.
    EPIDEMIOLOGY AND INFECTION, 2018, 146 (07): : 809 - 816
  • [2] A multi-model architecture based on Long Short-Term Memory neural networks for multi-step sea level forecasting
    Accarino, Gabriele
    Chiarelli, Marco
    Fiore, Sandro
    Federico, Ivan
    Causio, Salvatore
    Coppini, Giovanni
    Aloisio, Giovanni
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 124 : 1 - 9
  • [3] Multi-step Road Network Speed Prediction Based on Graph Convolution Long Short-Term Memory Neural Network
    Liang, Chaoqiang
    Chen, Yangzhou
    Shi, Zeyu
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 278 - 283
  • [4] Multivariate Multi-Step Long Short-Term Memory Neural Network for Simultaneous Stream-Water Variable Prediction
    Khosravi, Marzieh
    Duti, Bushra Monowar
    Yazdan, Munshi Md Shafwat
    Ghoochani, Shima
    Nazemi, Neda
    Shabanian, Hanieh
    ENG, 2023, 4 (03): : 1933 - 1950
  • [5] Short-term wind power prediction based on convolutional long-short-term memory neural networks
    Li R.
    Ma T.
    Zhang X.
    Hui X.
    Liu Y.
    Yin X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (06): : 304 - 311
  • [6] Multi-step optimization of hybrid cooling array via integrating Taguchi method and long short-term memory neural network
    Li, Honglin
    Zeng, Qi
    Zhuang, Yutao
    Wang, Yaning
    Ye, Zhouteng
    Cui, Jiahuan
    APPLIED THERMAL ENGINEERING, 2024, 254
  • [7] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [8] Cloud Affected Solar UV Prediction With Three-Phase Wavelet Hybrid Convolutional Long Short-Term Memory Network Multi-Step Forecast System
    Prasad, Salvin S.
    Deo, Ravinesh C.
    Downs, Nathan
    Igoe, Damien
    Parisi, Alfio, V
    Soar, Jeffrey
    IEEE ACCESS, 2022, 10 : 24704 - 24720
  • [9] Multi-Step Ahead Prediction of Freezing Depth via Deep Learning with Long Short-Term Memory
    Biniyaz, Aynaz
    Liu, Zhen
    GEO-CONGRESS 2024: SOIL IMPROVEMENT, SUSTAINABILITY, GEOENVIRONMENTAL, AND COLD REGIONS ENGINEERING, 2024, 351 : 742 - 750
  • [10] Multi-step short-term wind power prediction based on spatio-temporal graph convolutional networks
    Liu, Zheng
    Xiao, SiYuan
    Liu, Hongliang
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 352 - 357