Finite element hybridization of port-Hamiltonian systems

被引:0
|
作者
Brugnoli, Andrea [1 ]
Rashad, Ramy [2 ]
Zhang, Yi [3 ]
Stramigioli, Stefano [4 ]
机构
[1] Univ Toulouse, ICA, ISAE SUPAERO, INSA,CNRS,MINES ALBI,UPS, Toulouse, France
[2] King Fahd Univ Petr & Minerals, Control & Instrumentat Engn Dept, Dhahran, Saudi Arabia
[3] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
[4] Univ Twente, Robot & Mechatron Dept, Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Port-Hamiltonian systems; Finite element exterior calculus; Hybridization; Dual field; DISCONTINUOUS GALERKIN;
D O I
10.1016/j.amc.2025.129377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we extend the hybridization framework for the Hodge Laplacian [Awanou et al. (2023) [16]] to port-Hamiltonian systems describing linear wave propagation phenomena. To this aim, a dual field mixed Galerkin discretization is introduced, in which one variable is approximated via conforming finite element spaces, whereas the second is completely local. The mixed formulation is then hybridized to obtain an equivalent formulation that can be more efficiently solved using a static condensation procedure in discrete time. The size reduction achieved thanks to the hybridization is greater than the one obtained for the Hodge Laplacian as the final system only contains the globally coupled traces of one variable. Numerical experiments on the 3D wave and Maxwell equations illustrate the convergence of the method and the size reduction achieved by the hybridization.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [32] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [33] Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus
    Brugnoli, Andrea
    Rashad, Ramy
    Stramigioli, Stefano
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [34] Exergetic port-Hamiltonian systems for multibody dynamics
    Lohmayer, Markus
    Capobianco, Giuseppe
    Leyendecker, Sigrid
    MULTIBODY SYSTEM DYNAMICS, 2024,
  • [35] Control by Interconnection of Distributed Port-Hamiltonian Systems Based on Finite Elements Approximation
    Macchelli, Alessandro
    Melchiorri, Claudio
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 5133 - 5138
  • [36] Bounded stabilisation of stochastic port-Hamiltonian systems
    Satoh, Satoshi
    Saeki, Masami
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (08) : 1573 - 1582
  • [37] Port-Hamiltonian systems with energy and power ports
    Krhac, Kaja
    Maschke, Bernhard
    van der Schaft, Arjan
    IFAC PAPERSONLINE, 2024, 58 (06): : 280 - 285
  • [38] Port-Hamiltonian Systems Theory: An Introductory Overview
    van der Schaft, Arjan
    Jeltsema, Dimitri
    FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL, 2014, 1 (2-3): : I - +
  • [39] Discrete port-Hamiltonian systems: mixed interconnections
    Talasila, Viswanath
    Clemente-Gallardo, J.
    van der Schaft, A. J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5656 - 5661
  • [40] Learning port-Hamiltonian Systems-Algorithms
    Salnikov, V.
    Falaize, A.
    Lozienko, D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 126 - 134