Design and Implementation of Elliptical Ultrasonic Vibrational Piezoelectric Transducer

被引:0
|
作者
Wu, Zhizhong [1 ]
Zhang, Zhao [1 ]
Wu, Deguang [1 ]
Chen, Yuanhang [1 ]
Hu, Fan [1 ]
Guo, Chenxin [1 ]
Tang, Lijun [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Xianfeng St, Changsha 410114, Hunan, Peoples R China
关键词
Elliptical ultrasonic vibration; Piezoelectric transducer; CNN; NSGA; Electromechanical Coupling Coefficient; ACTUATOR; MODEL;
D O I
10.1007/s42417-024-01717-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeElliptical ultrasonic vibration is an essential auxiliary method for reducing milling forces and temperatures during machining processes. Rapidly determining the optimal geometric parameters of elliptical ultrasonic transducers for achieving effective vibration is of paramount significance.MethodsThis paper introduces a geometric modeling method for elliptical ultrasonic vibration piezoelectric transducers based on transfer matrice and convolutional neural network (CNN). The method employs the transfer matrix method to establish a composite beam bending vibration model of the transducer and constructs a dataset of the electromechanical coupling coefficient (ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}) for the piezoelectric ceramic in the X-direction (X-PZT), which corresponds to the transducer model parameters, including the length of the tail mass, the length of the X-PZT, and the length and diameter of the horn. CNN trained the dataset to obtain the ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} objective function. The Non-Dominated Sorting Genetic Algorithm (NSGA) is used to find the optimal solution for the objective function.ResultsThe results indicate that this method efficiently attains the optimal 2nd-order bending vibration ke value of the transducer to be 21.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , with a corresponding ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} value of 22.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} achieved through finite element simulation, resulting in an error of 0.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Furthermore, field displacement (Amp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{mp}$$\end{document}) and impedance model (|Z|) curves for various transducer bending vibrations were obtained, demonstrating that the error associated with the 2nd-order theoretical analyses and finite element simulation results is less than that of the 1st-order, with the maximum error in the 2nd-order ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} not surpassing 4.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}.ConclusionDesign and implementation of an elliptical ultrasonic vibrational transducer were carried out based on the theoretical and simulation studies. The effectiveness of the theoretical model and simulations was experimentally validated through impedance analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Design and Fabrication of a Piezoelectric Micromachined Ultrasonic Transducer Array Based on Ceramic PZT
    Wang, Haoran
    Yu, Yuanyuan
    Chen, Zhenfang
    Yang, Hao
    Jiang, Huabei
    Xie, Huikai
    2018 IEEE SENSORS, 2018, : 986 - 989
  • [22] Multilayer Stairstep Piezoelectric Structure Design for Ultrabroad-Bandwidth Ultrasonic Transducer
    Lin, Pengfei
    Zhu, Yuanbo
    Fei, Chunlong
    Chen, Dongdong
    Chen, Zhaobao
    Zheng, Chenxi
    Zhang, Shuxiao
    Li, Di
    Feng, Wei
    Yang, Yintang
    Chai, Changchun
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 19889 - 19895
  • [23] Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network
    Liu, Shi-Jie
    Feng, Ping-Fa
    Zha, Hui-Ting
    Feng, Feng
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (05): : 933 - 939
  • [24] A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic lamb waves
    Gachagan, A
    Hayward, G
    Banks, R
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (07) : 1175 - 1182
  • [25] Design and Implementation of an Ultrasonic Surgical System Based on Transducer Admittance Analysis
    Liu, Fuchun
    Wang, Songbo
    Li, Bin
    Deng, Haixing
    Lan, Tao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3636 - 3641
  • [26] ULTRASONIC TRANSDUCER WITH STACKED POROUS PIEZOELECTRIC CERAMICS
    MIZUMURA, K
    KURIHARA, Y
    OHASHI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (5B): : 2282 - 2284
  • [27] Piezoelectric thick films for ultrasonic transducer arrays
    Hackenberger, WS
    Shrout, TR
    Pickrell, DP
    1996 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, 1996, 2920 : 71 - 76
  • [28] Study on the multifrequency sandwiched piezoelectric ultrasonic transducer
    Lin, Shuyu
    Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 1995, 17 (05): : 19 - 23
  • [29] A piezoelectric micromachined ultrasonic transducer with mechanical grooves
    Zhou, Xuemei
    Yi, Yongjie
    Cai, Guixiang
    Zhang, Jiajia
    Huang, He
    Liu, Tao
    Zhang, Jiahuan
    Yu, Hongbing
    Mu, Xiaojing
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (08)
  • [30] Piezoelectric ultrasonic transducer based on flexible AIN
    Mastronardi, Vincenzo Mariano
    Guido, Francesco
    Amato, Massimiliano
    De Vittorio, Massimo
    Petroni, Simona
    MICROELECTRONIC ENGINEERING, 2014, 121 : 59 - 63