Design and Implementation of Elliptical Ultrasonic Vibrational Piezoelectric Transducer

被引:0
|
作者
Wu, Zhizhong [1 ]
Zhang, Zhao [1 ]
Wu, Deguang [1 ]
Chen, Yuanhang [1 ]
Hu, Fan [1 ]
Guo, Chenxin [1 ]
Tang, Lijun [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Xianfeng St, Changsha 410114, Hunan, Peoples R China
关键词
Elliptical ultrasonic vibration; Piezoelectric transducer; CNN; NSGA; Electromechanical Coupling Coefficient; ACTUATOR; MODEL;
D O I
10.1007/s42417-024-01717-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeElliptical ultrasonic vibration is an essential auxiliary method for reducing milling forces and temperatures during machining processes. Rapidly determining the optimal geometric parameters of elliptical ultrasonic transducers for achieving effective vibration is of paramount significance.MethodsThis paper introduces a geometric modeling method for elliptical ultrasonic vibration piezoelectric transducers based on transfer matrice and convolutional neural network (CNN). The method employs the transfer matrix method to establish a composite beam bending vibration model of the transducer and constructs a dataset of the electromechanical coupling coefficient (ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}) for the piezoelectric ceramic in the X-direction (X-PZT), which corresponds to the transducer model parameters, including the length of the tail mass, the length of the X-PZT, and the length and diameter of the horn. CNN trained the dataset to obtain the ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} objective function. The Non-Dominated Sorting Genetic Algorithm (NSGA) is used to find the optimal solution for the objective function.ResultsThe results indicate that this method efficiently attains the optimal 2nd-order bending vibration ke value of the transducer to be 21.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , with a corresponding ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} value of 22.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} achieved through finite element simulation, resulting in an error of 0.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Furthermore, field displacement (Amp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{mp}$$\end{document}) and impedance model (|Z|) curves for various transducer bending vibrations were obtained, demonstrating that the error associated with the 2nd-order theoretical analyses and finite element simulation results is less than that of the 1st-order, with the maximum error in the 2nd-order ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} not surpassing 4.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}.ConclusionDesign and implementation of an elliptical ultrasonic vibrational transducer were carried out based on the theoretical and simulation studies. The effectiveness of the theoretical model and simulations was experimentally validated through impedance analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Ultrasonic piezoelectric transducer design with concave surface
    Lim, Chaegyu
    Cha, Youngsu
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVII, 2023, 12483
  • [2] Design and analysis of a piezoelectric ultrasonic transducer for distance measurement
    Gui, ZL
    Hu, XB
    Li, LT
    ISAF 2002: PROCEEDINGS OF THE 13TH IEEE INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF FERROELECTRICS, 2002, : 335 - 338
  • [3] An approach to design a high power piezoelectric ultrasonic transducer
    Abdullah, Amir
    Shahini, Mohsen
    Pak, Abbas
    JOURNAL OF ELECTROCERAMICS, 2009, 22 (04) : 369 - 382
  • [4] Review of the design of power ultrasonic generator for piezoelectric transducer
    Zhang, Kuan
    Gao, Guofu
    Zhao, Chongyang
    Wang, Yi
    Wang, Yan
    Li, Jianfeng
    ULTRASONICS SONOCHEMISTRY, 2023, 96
  • [5] An approach to design a high power piezoelectric ultrasonic transducer
    Amir Abdullah
    Mohsen Shahini
    Abbas Pak
    Journal of Electroceramics, 2009, 22 : 369 - 382
  • [6] Design of Piezoelectric Ultrasonic Transducer Based on Doped PDMS
    Yang, Ran
    Liu, Wenyi
    Gao, Wanjia
    Kang, Dingwei
    SENSORS, 2021, 21 (09)
  • [7] IMPLEMENTATION OF FOURIER OPTICS IN ULTRASONIC TRANSDUCER DESIGN
    HARRISON, GH
    BALCERKUBICZEK, EK
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1987, 34 (03) : 417 - 417
  • [8] Piezoelectric ultrasonic transducer for longitudinal-flexural vibrational mode-conversion
    Zhang, Xiaoli
    Liang, Bo
    APPLIED ACOUSTICS, 2018, 129 : 284 - 290
  • [9] A Novel Design of Piezoelectric Ultrasonic Transducer with High Temperature Resistance
    Song, Wenpin
    Yuan, Xianwei
    Yu, Shimin
    Yu, Xiyang
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [10] Piezoelectric Ultrasonic Transducer for NDT
    Kim, Gi-Bok
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2011, 31 (04) : 414 - 420