Well-Balanced Fifth-Order Finite Volume WENO Schemes with Constant Subtraction Technique for Shallow Water Equations (vol 102, 32, 2025)

被引:0
|
作者
Zhao, Lidan [1 ]
Tao, Zhanjing [1 ]
Zhang, Min [2 ,3 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Peking Univ, Natl Engn Lab Big Data Anal & Applicat, Beijing 100871, Peoples R China
[3] Peking Univ, Chongqing Res Inst Big Data, Chongqing 401121, Peoples R China
关键词
D O I
10.1007/s10915-025-02831-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Well-Balanced Path-Consistent Finite Volume EG Schemes for the Two-Layer Shallow Water Equations
    Dudzinski, Michael
    Lukacova-Medvidova, Maria
    COMPUTATIONAL SCIENCE AND HIGH PERFORMANCE COMPUTING IV, 2011, 115 : 121 - 135
  • [32] High Order Asymptotic Preserving and Well-Balanced Schemes for the Shallow Water Equations with Source Terms
    Huang, Guanlan
    Boscarino, Sebastiano
    Xiong, Tao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (05) : 1229 - 1262
  • [33] Well-balanced finite difference WENO-AO scheme for rotating shallow water equations with Coriolis force
    Zhang, Nan
    COMPUTERS & FLUIDS, 2024, 273
  • [34] High-order finite volume WENO schemes for the shallow water equations with dry states
    Xing, Yulong
    Shu, Chi-Wang
    ADVANCES IN WATER RESOURCES, 2011, 34 (08) : 1026 - 1038
  • [35] Well-balanced finite volume evolution Galerkin methods for the shallow water equations with source terms
    Lukácová-Medvid'ová, M
    Vlk, Z
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1165 - 1171
  • [36] On a well-balanced high-order finite volume scheme for the shallow water equations with bottom topography and dry areas
    Gallardo, J. M.
    Castro, M.
    Pares, C.
    Gonzalez-Vida, J. M.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 259 - 270
  • [37] WELL-BALANCED SECOND-ORDER FINITE ELEMENT APPROXIMATION OF THE SHALLOW WATER EQUATIONS WITH FRICTION
    Guermond, Jean-Luc
    de Luna, Manuel Quezada
    Popov, Bojan
    Kees, Christopher E.
    Farthing, Matthew W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A3873 - A3901
  • [38] Well-Balanced Central Schemes on Overlapping Cells with Constant Subtraction Techniques for the Saint-Venant Shallow Water System
    Yang, Suo
    Kurganov, Alexander
    Liu, Yingjie
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (03) : 678 - 698
  • [39] Well-Balanced Central Schemes on Overlapping Cells with Constant Subtraction Techniques for the Saint-Venant Shallow Water System
    Suo Yang
    Alexander Kurganov
    Yingjie Liu
    Journal of Scientific Computing, 2015, 63 : 678 - 698
  • [40] A New Finite Difference Well-Balanced Mapped Unequal-Sized WENO Scheme for Solving Shallow Water Equations
    Li, Liang
    Wang, Zhenming
    Zhu, Jun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (05) : 1176 - 1196