Comparative transcriptome and metabolome analysis reveals the differential response to salinity stress of two genotypes brewing sorghum

被引:0
|
作者
Zhou, Wei [1 ]
Wang, Zhen Guo [2 ]
Li, Yan [2 ]
Wu, Guo Jiang [1 ]
Li, Mo [2 ]
Deng, Zhi Lan [2 ]
Cui, Feng Juan [2 ]
Xu, Qing Quan [2 ]
Li, Yimeng [1 ]
Zhou, Ya Xing [1 ,3 ]
机构
[1] Inner Mongolia Minzu Univ, Agr Coll, Tongliao 028000, Inner Mongolia, Peoples R China
[2] Tongliao Agr & Anim Husb Res Inst, Tongliao 028000, Inner Mongolia, Peoples R China
[3] Inner Mongolia Minzu Univ, Agr Coll, 996 Xilamulun Str, Tongliao 028000, Inner Mongolia, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Brewing sorghum; Salinity tolerance; Transcriptome; Metabolome; Transcription factor; SALT STRESS; TOLERANCE; DROUGHT; COLD; ACID; GENE;
D O I
10.1038/s41598-025-87100-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions. Notably, there were variations in the expression of genes and metabolites among different genotypes in response to high-salt stress. Specifically, certain transcription factors belonging to the WRKY, MYB, and NAC families were identified as being involved in the response to increased external salinity. WGCNA analysis identified stage-specific gene expression for different salinity gradients in each cultivar, and explored the gene function by KEGG enrichment analysis. Combined analysis of DEGs and DEMs in hormone synthesis found AUX/IAA, SAUR, CRE1, A-ARR, PP2C, SNRK2 genes, and 3-indoleacetic acid and jasmonic acid were evidently differential expression among different salt concentrations. Taken together, our study carried out a comprehensive overview of two genotypes of brewing sorghum gene and metabolite expression differences in response to salt stress, and expanded the understanding of responsive mechanism of brewing sorghum to salt stress.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Transcriptome and Metabolome Integrated Analysis Reveals the Mechanism of Cinnamomum bodinieri Root Response to Alkali Stress
    Han, Haozhang
    Zhang, Lihua
    Li, Suhua
    Zhao, Rong
    Wang, Fang
    Dong, Rong
    Wang, Xiaoli
    PLANT MOLECULAR BIOLOGY REPORTER, 2023, 41 (03) : 470 - 488
  • [22] Transcriptome and Metabolome Integrated Analysis Reveals the Mechanism of Cinnamomum bodinieri Root Response to Alkali Stress
    Haozhang Han
    Lihua Zhang
    Suhua Li
    Rong Zhao
    Fang Wang
    Rong Dong
    Xiaoli Wang
    Plant Molecular Biology Reporter, 2023, 41 : 470 - 488
  • [23] Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress
    Zhao, Xiaoming
    Liu, Yang
    Liu, Xin
    Jiang, Jing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
  • [24] Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress
    Xiangyu Ma
    Qijiang Jin
    Yanjie Wang
    Xiaowen Wang
    Xuelian Wang
    Meihua Yang
    Chunxiu Ye
    Zhijuan Yang
    Yingchun XU
    BMC Genomics, 24
  • [25] Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress
    Ma, Xiangyu
    Jin, Qijiang
    Wang, Yanjie
    Wang, Xiaowen
    Wang, Xuelian
    Yang, Meihua
    Ye, Chunxiu
    Yang, Zhijuan
    Xu, Yingchun
    BMC GENOMICS, 2023, 24 (01)
  • [26] Comparative Transcriptome Analysis of Seedling Stage of Two Sorghum Cultivars Under Salt Stress
    Cui, Jianghui
    Ren, Genzeng
    Qiao, Haiyu
    Xiang, Xiaodong
    Huang, Lisha
    Chang, Jinhua
    JOURNAL OF PLANT GROWTH REGULATION, 2018, 37 (03) : 986 - 998
  • [27] Comparative Transcriptome Analysis of Seedling Stage of Two Sorghum Cultivars Under Salt Stress
    Jianghui Cui
    Genzeng Ren
    Haiyu Qiao
    Xiaodong Xiang
    Lisha Huang
    Jinhua Chang
    Journal of Plant Growth Regulation, 2018, 37 : 986 - 998
  • [28] Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances
    Zhou, Zhenling
    Liu, Juan
    Meng, Wenna
    Sun, Zhiguang
    Tan, Yiluo
    Liu, Yan
    Tan, Mingpu
    Wang, Baoxiang
    Yang, Jianchang
    PLANTS-BASEL, 2023, 12 (19):
  • [29] Comparative transcriptome analysis reveals potential regulatory mechanisms in response to changes in physiological functions in Oreochromis aureus under salinity stress
    Yuan, Chang
    Zhou, Kangqi
    Pan, Xianhui
    Lin, Yong
    Qin, Junqi
    Wang, Dapeng
    Chen, Zhong
    Du, Xuesong
    Huang, Yin
    AQUACULTURE REPORTS, 2025, 40
  • [30] Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes
    Khan, Hammad Aziz
    Sharma, Niharika
    Siddique, Kadambot H. M.
    Colmer, Timothy David
    Sutton, Tim
    Baumann, Ute
    FRONTIERS IN PLANT SCIENCE, 2023, 14