High convergence order iterative method for nonlinear system of equations in Banach spaces

被引:0
|
作者
Sharma, Rajni [1 ]
Deep, Gagan [2 ,3 ]
Bala, Neeru [1 ]
机构
[1] DAV Inst Engn & Technol, Dept Appl Sci, Jalandhar 144008, Punjab, India
[2] Hans Raj Mahila Mahavidyalaya, Dept Math, Jalandhar 144008, Punjab, India
[3] IK Gujral Punjab Tech Univ, Kapurthala 144601, Punjab, India
来源
关键词
Banach spaces; Local convergence; Iterative methods; Efficiency; LOCAL CONVERGENCE; SOLVING SYSTEMS;
D O I
10.1007/s41478-025-00888-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, an efficient eighth-order iterative method is proposed for solving systems of nonlinear equations in Banach spaces. The local convergence is analyzed by assuming weaker omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}-continuity condition on first order Fr & eacute;chet derivative which thus expands the applicability of the method for such problems where the earlier study based on Lipschitz or H & ouml;lder conditions cannot be used. Computational Efficiency of the proposed scheme is studied and compared with existing iterative methods. Numerical experiments are performed on a variety of real life problems including Kepler's equation, Van der waals equation of state, mixed Hammerstein-type equation etc. and comparison results are corroborated to extend the utility of presented method.
引用
收藏
页码:989 / 1018
页数:30
相关论文
共 50 条
  • [41] Iterative methods with fourth-order convergence for nonlinear equations
    Noor, Khalida Inayat
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 221 - 227
  • [42] Convergence of an iterative method for solving a class of nonlinear equations
    Wang, Xiuhua
    Kou, Jisheng
    Shi, Dongyang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (07) : 1322 - 1328
  • [43] Convergence of a third order method for fixed points in Banach spaces
    Parhi, S. K.
    Gupta, D. K.
    NUMERICAL ALGORITHMS, 2012, 60 (03) : 419 - 434
  • [44] An iterative method with quartic convergence for solving nonlinear equations
    Saeed, Rostam K.
    Aziz, Kawa M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) : 435 - 440
  • [45] Semilocal convergence of a sixth-order method in Banach spaces
    Lin Zheng
    Chuanqing Gu
    Numerical Algorithms, 2012, 61 : 413 - 427
  • [46] Convergence of a third order method for fixed points in Banach spaces
    S. K Parhi
    D. K. Gupta
    Numerical Algorithms, 2012, 60 : 419 - 434
  • [47] Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations
    Alberto Magreñán Á.
    Argyros I.K.
    SeMA Journal, 2015, 71 (1) : 39 - 55
  • [48] Increasing the convergence order of an iterative method for nonlinear systems
    Cordero, Alicia
    Hueso, Jose L.
    Martinez, Eulalia
    Torregrosa, Juan R.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2369 - 2374
  • [49] Local Convergence and the Dynamics of a Family of High Convergence Order Method for Solving Nonlinear Equations
    Magrenan, A. A.
    Argyros, I. K.
    Sarria, I.
    Sicilia, J. A.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [50] Iterative Processes with High Order of Convergence for Nonlinear Systems
    Cordero, A.
    Hueso, J. L.
    Martinez, E.
    Torregrosa, J. R.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94