Automated segment-level coronary artery calcium scoring on non-contrast CT: a multi-task deep-learning approach

被引:1
|
作者
Foellmer, Bernhard [1 ,2 ]
Tsogias, Sotirios [1 ,2 ]
Biavati, Federico [1 ,2 ]
Schulze, Kenrick [1 ,2 ]
Bosserdt, Maria [1 ,2 ]
Hoevermann, Lars Gerrit [1 ,2 ]
Stober, Sebastian [3 ]
Samek, Wojciech [4 ,5 ,6 ]
Kofoed, Klaus F. [7 ,8 ]
Maurovich-Horvat, Pal [9 ,10 ]
Donnelly, Patrick [11 ]
Benedek, Theodora [12 ]
Williams, Michelle C. [13 ]
Dewey, Marc [1 ,2 ,14 ,15 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[2] Humboldt Univ, Freie Univ Berlin, Berlin, Germany
[3] Otto Von Guericke Univ, Artificial Intelligence Lab, Magdeburg, Germany
[4] Fraunhofer Heinrich Hertz Inst, Dept Artificial Intelligence, Berlin, Germany
[5] Tech Univ Berlin, Dept Elect Engn & Comp Sci, Berlin, Germany
[6] Berlin Inst Fdn Learning & Data, BIFOLD, Berlin, Germany
[7] Rigshosp, Copenhagen Univ Hosp, Dept Cardiol & Radiol, Copenhagen, Denmark
[8] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
[9] Semmelweis Univ, Heart & Vasc Ctr, Budapest, Hungary
[10] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[11] Southeastern Hlth & Social Care Trust, Dept Cardiol, Belfast, North Ireland
[12] George Emil Palade Univ Med Pharm Sci & Technol, Dept Internal Med, Clin Cardiol, Targu Mures, Romania
[13] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
[14] DHZC German Heart Ctr Charite, BIH Berlin Inst Hlth, Berlin, Germany
[15] DZHK German Ctr Cardiovasc Res, Berlin, Germany
来源
INSIGHTS INTO IMAGING | 2024年 / 15卷 / 01期
关键词
Coronary artery calcium scoring; Deep learning; Coronary CT; Multi-task learning; Active learning; CARDIAC CT; COMPUTED-TOMOGRAPHY;
D O I
10.1186/s13244-024-01827-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop and evaluate a multi-task deep-learning (DL) model for automated segment-level coronary artery calcium (CAC) scoring on non-contrast computed tomography (CT) for precise localization and quantification of calcifications in the coronary artery tree.MethodsThis study included 1514 patients (mean age, 60.0 +/- 10.2 years; 56.0% female) with stable chest pain from 26 centers participating in the multicenter DISCHARGE trial (NCT02400229). The patients were randomly assigned to a training/validation set (1059) and a test set (455). We developed a multi-task neural network for performing the segmentation of calcifications on the segment level as the main task and the segmentation of coronary artery segment regions with weak annotations as an auxiliary task. Model performance was evaluated using (micro-average) sensitivity, specificity, F1-score, and weighted Cohen's kappa for segment-level agreement based on the Agatston score and performing interobserver variability analysis.ResultsIn the test set of 455 patients with 1797 calcifications, the model assigned 73.2% (1316/1797) to the correct coronary artery segment. The model achieved a micro-average sensitivity of 0.732 (95% CI: 0.710-0.754), a micro-average specificity of 0.978 (95% CI: 0.976-0.980), and a micro-average F1-score of 0.717 (95% CI: 0.695-0.739). The segment-level agreement was good with a weighted Cohen's kappa of 0.808 (95% CI: 0.790-0.824), which was only slightly lower than the agreement between the first and second observer (0.809 (95% CI: 0.798-0.845)).ConclusionAutomated segment-level CAC scoring using a multi-task neural network approach showed good agreement on the segment level, indicating that DL has the potential for automated coronary artery calcification classification.Critical relevance statementMulti-task deep learning can perform automated coronary calcium scoring on the segment level with good agreement and may contribute to the development of new and improved calcium scoring methods.Key PointsSegment-level coronary artery calcium scoring is a tedious and error-prone task.The proposed multi-task model achieved good agreement with a human observer on the segment level.Deep learning can contribute to the automation of segment-level coronary artery calcium scoring.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] CORONARY CALCIUM SCORING USING TRUE AND VIRTUAL NON-CONTRAST RECONSTRUCTIONS ON PHOTON COUNTING CT WITH DIFFERING SLICE INCREMENT: IMPACT ON CALCIUM SEVERITY CLASSIFICATIONS
    Kaldas, Marco
    Weber, Jonathan
    Ali, Ziad A.
    Chau, Karen W.
    Khalique, Omar K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 1561 - 1561
  • [42] Coronary calcium scoring using virtual non-contrast reconstructions on a dual-layer spectral CT system: Feasibility in the clinical practice
    Langenbach, I. L.
    Wienemann, H.
    Klein, K.
    Scholtz, J. E.
    Pennig, L.
    Langzam, E.
    Pahn, G.
    Holz, J. A.
    Maintz, D.
    Naehle, C. P.
    Langenbach, M. C.
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 159
  • [43] Automated Coronary Artery Identification in CT Angiography: A Deep Learning Approach Using Bounding Boxes
    Sakamoto, Marin
    Yoshimura, Takaaki
    Sugimori, Hiroyuki
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [44] Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
    Nicolas, Gogin
    Viti, Mario
    Nicodeme, Luc
    Ohana, Mickael
    Talbot, Hugues
    Gencer, Umit
    Mekukosokeng, Magloire
    Caramella, Thomas
    Diascorn, Yann
    Airaud, Jean-Yves
    Guillot, Marc-Samir
    Bensalah, Zoubir
    Hieu, Caroline Dam
    Abdallah, Bassam
    Bousaid, Imad
    Lassau, Nathalie
    Mousseaux, Elie
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (11) : 683 - 690
  • [45] Machine learning accurately quantifies epicardial adipose tissue from non-contrast CT images in coronary artery disease
    Cheng, N.
    Tan, E. W. P.
    Leng, S.
    Baskaran, L.
    Teo, L.
    Yew, M. S.
    Singh, M.
    Huang, W. M.
    Chan, M. Y. Y.
    Ngiam, K. Y.
    Vaughan, R.
    Chua, T.
    Tan, S. Y.
    Lee, H. K.
    Zhong, L.
    EUROPEAN HEART JOURNAL, 2023, 44 : 159 - 159
  • [46] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Junda Qu
    Yuting Chang
    Liwei Sun
    Yutang Li
    Qian Si
    Min-Fu Yang
    Chunlin Li
    Xu Zhang
    Cognitive Computation, 2022, 14 : 1392 - 1404
  • [47] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Qu, Junda
    Chang, Yuting
    Sun, Liwei
    Li, Yutang
    Si, Qian
    Yang, Min-Fu
    Li, Chunlin
    Zhang, Xu
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1392 - 1404
  • [48] Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images
    Guilenea, Federico N.
    Casciaro, Mariano E.
    Soulat, Gilles
    Mousseaux, Elie
    Craiem, Damian
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (03):
  • [49] Deep learning for vessel-specific coronary artery calcium scoring: validation on a multi-centre dataset
    Winkel, David J.
    Suryanarayana, V. Reddappagari
    Ali, A. Mohamed
    Goerich, Johannes
    Buss, Sebastian Johannes
    Mendoza, Axel
    Schwemmer, Chris
    Sharma, Puneet
    Schoepf, U. Joseph
    Rapaka, Saikiran
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2022, 23 (06) : 846 - 854
  • [50] A deep-learning method for the denoising of ultra-low dose chest CT in coronary artery calcium score evaluation
    Klug, M.
    Shemesh, J.
    Green, M.
    Mayer, A.
    Kerpel, A.
    Konen, E.
    Marom, E. M.
    CLINICAL RADIOLOGY, 2022, 77 (07) : E509 - E517