On the solvability of the Cauchy problem for a thermal-electrical model

被引:0
|
作者
Artemeva, M. V. [1 ,2 ]
Korpusov, M. O. [1 ,2 ]
Panin, A. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow, Russia
[2] PeoplesFriendship Univ Russia, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
nonlinear Sobolev-type equations; local solvability; nonlinear capacity; blow-up time estimates; BLOW-UP; NONLINEAR-SYSTEM; EQUATIONS;
D O I
10.1134/S0040577925020011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a thermal-electrical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional model of semiconductor heating in an electric field. We prove the existence of a classical solution nonextendable in time for the corresponding Cauchy problem.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条
  • [1] ON THE EXISTENCE OF A NONEXTENDABLE SOLUTION OF THE CAUCHY PROBLEM FOR A (3+1)-DIMENSIONAL THERMAL-ELECTRICAL MODEL
    Artemeva, M. V.
    Korpusov, M. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 221 (03) : 2207 - 2218
  • [2] On the Existence of a Nonextendable Solution of the Cauchy problem for a(1+1)-Dimensional Thermal-Electrical Model
    Artemeva, M. V.
    Korpusov, M. O.
    MATHEMATICAL NOTES, 2024, 115 (5-6) : 653 - 663
  • [3] Global-in-time solvability of a nonlinear system of equations of a thermal-electrical model with quadratic nonlinearity
    Korpusov, M. O.
    Perlov, A. Yu.
    Timoshenko, A. V.
    Shafir, R. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (02) : 1743 - 1754
  • [4] On the solvability of an abstract Cauchy problem
    Chaikovskii, A. V.
    DIFFERENTIAL EQUATIONS, 2010, 46 (05) : 762 - 767
  • [5] On the solvability of an abstract Cauchy problem
    A. V. Chaikovskii
    Differential Equations, 2010, 46 : 762 - 767
  • [6] THERMAL-ELECTRICAL DOMAINS IN METALS
    ABRAMOV, GI
    GUREVICH, AV
    DZUGUTOV, VM
    MINTS, RG
    FISHER, LM
    JETP LETTERS, 1983, 37 (10) : 535 - 538
  • [7] Solvability of the Cauchy problem for a pseudohyperbolic system
    Bondar, L. N.
    Demidenko, G. V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (6-7) : 1084 - 1099
  • [8] SOLVABILITY OF CAUCHY PROBLEM FOR EVOLUTIONAL EQUATIONS
    YAKUBOV, SY
    DOKLADY AKADEMII NAUK SSSR, 1964, 156 (05): : 1041 - &
  • [9] On the correct solvability of one Cauchy problem
    Litovchenko V.A.
    Ukrainian Mathematical Journal, 2002, 54 (8) : 1281 - 1294
  • [10] On Solvability of the Cauchy Problem for a Loaded System
    Belov, Yuriy Ya
    Korshun, Kirill, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (02): : 155 - 161