Deep learning based automatic quantification of aortic valve calcification on contrast enhanced coronary CT angiography

被引:0
|
作者
Park, Daebeom [4 ,5 ]
Kwon, Soon-Sung [5 ]
Song, Yoona [5 ]
Kim, Yoon A. [5 ]
Jeong, Baren [1 ]
Lee, Whal [1 ,2 ,3 ,4 ]
Park, Eun-Ah [1 ,2 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul, South Korea
[3] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Clin Med Sci, Seoul, South Korea
[5] AI Med Inc, Seoul, South Korea
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
CARDIOVASCULAR RISK; SEVERITY; STENOSIS; CALCIUM; PREDICTOR;
D O I
10.1038/s41598-025-93744-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantifying aortic valve calcification is critical for assessing the severity of aortic stenosis, predicting cardiovascular risk, and guiding treatment decisions. This study evaluated the feasibility of a deep learning-based automatic quantification of aortic valve calcification using contrast-enhanced coronary CT angiography and compared the results with manual calcium scoring. A retrospective analysis of 177 patients undergoing aortic stenosis evaluation was conducted, divided into a development set (n = 97) and an internal validation set (n = 80). The DeepLab v3 + model segmented the ascending aorta, and the XGBoost model refined the aortic valve region using representative attenuation values. Calcifications were identified with a tailored threshold based on these values and quantified using a weighted scoring method analogous to the Agatston score. The automated method showed excellent agreement with manual Agatston scores derived from non-contrast CT (Pearson correlation coefficient = 0.93, 95% confidence interval [CI]: 0.89-0.95, p < 0.001, concordance correlation coefficient = 0.92, 95% CI: 0.87-0.95). For classifying severe aortic stenosis, defined by calcium scores exceeding 2000 for men and 1300 for women, the approach achieved a sensitivity of 88.6%, specificity of 91.1%, and overall accuracy of 90.0%. This deep learning model provides automated aortic valve calcification quantification with high accuracy on enhanced CT. This approach offers an alternative for measuring aortic valve calcium when non-contrast CT is unavailable, with the potential to reduce reliance on non-contrast CT, minimize operator dependency, and lower patient radiation exposure.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A coronary calcification detection scheme using contrast enhanced CT dataset
    Li, Zhenwei
    Yang, Xiaoli
    Zhang, Jianguo
    Journal of Information and Computational Science, 2013, 10 (15): : 4835 - 4847
  • [32] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Qu, Junda
    Chang, Yuting
    Sun, Liwei
    Li, Yutang
    Si, Qian
    Yang, Min-Fu
    Li, Chunlin
    Zhang, Xu
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1392 - 1404
  • [33] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Junda Qu
    Yuting Chang
    Liwei Sun
    Yutang Li
    Qian Si
    Min-Fu Yang
    Chunlin Li
    Xu Zhang
    Cognitive Computation, 2022, 14 : 1392 - 1404
  • [34] Cardiovascular risk assessment based on the quantification of coronary calcium in contrast-enhanced coronary computed tomography angiography
    Bischoff, Bernhard
    Kantert, Claudia
    Meyer, Tanja
    Hadamitzky, Martin
    Martinoff, Stefan
    Schoemig, Albert
    Hausleiter, Joerg
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2012, 13 (06) : 468 - 475
  • [35] Feasibility and Accuracy of Three-Dimension Aortic Valve Annulus Planimetry on Cardiac CT Angiography: A New Full Automatic Deep Learning Method
    Wu, Xinlei
    Jiang, YiQiu
    Elkoumy, Ahmed
    Wang, Xiaodong
    Soliman, Osama
    Zhang, Xinmin
    Wu, Daozhu
    Wu, Lianpin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (16) : S32 - S32
  • [36] Deep learning-based image restoration algorithm for coronary CT angiography
    Tatsugami, Fuminari
    Higaki, Toru
    Nakamura, Yuko
    Yu, Zhou
    Zhou, Jian
    Lu, Yujie
    Fujioka, Chikako
    Kitagawa, Toshiro
    Kihara, Yasuki
    Iida, Makoto
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (10) : 5322 - 5329
  • [37] DEEP LEARNING BASED DETECTION OF ACUTE AORTIC SYNDROME IN CONTRAST CT IMAGES
    Yellapragada, Manikanta Srikar
    Xie, Yiting
    Graf, Benedikt
    Richmond, David
    Krishnan, Arun
    Sitek, Arkadiusz
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1474 - 1477
  • [38] Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation
    M. A. Elattar
    E. M. Wiegerinck
    R. N. Planken
    E. vanbavel
    H. C. van Assen
    J. Baan
    H. A. Marquering
    Medical & Biological Engineering & Computing, 2014, 52 : 611 - 618
  • [39] Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation
    Elattar, M. A.
    Wiegerinck, E. M.
    Planken, R. N.
    Vanbavel, E.
    van Assen, H. C.
    Baan, J., Jr.
    Marquering, H. A.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2014, 52 (07) : 611 - 618
  • [40] AUTOMATIC ASSESSMENT OF CALCIUM SCORE FROM CONTRAST-ENHANCED 256-ROW CORONARY CT ANGIOGRAPHY
    Rubinshtein, Ronen
    Eilot, Dov
    Halon, David
    Goldenberg, Roman
    Gaspar, Tamar
    Lewis, Basil
    Peled, Nathan
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (13) : E1185 - E1185