Experimental investigation and prediction of chemical etching kinetics on mask glass using random forest machine learning

被引:0
|
作者
Zhu, Lin [1 ]
Yang, Tao [1 ]
Li, Shuang [1 ]
Yang, Fan [1 ]
Jiang, Chongwen [1 ,2 ]
Xie, Le [1 ,2 ]
机构
[1] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Hunan Prov Key Lab Efficient & Clean Utilizat Mang, Changsha 410083, Hunan, Peoples R China
来源
关键词
Chemical etching glass; Kinetics; Machine learning; Random forest; POLYCARBOXYLATE SUPERPLASTICIZERS; SODIUM GLUCONATE; FROSTED GLASS; ROUGHNESS; SYSTEMS; MODEL;
D O I
10.1016/j.cherd.2024.12.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chemical etching on the surface of glass is an essential program to improve its anti-reflective properties of glass. Developing a model for chemical etching kinetics is crucial for improving and refining the etching process. In this study, we investigated the impact of reaction temperature, reaction time, the viscosity and additives of the chemical etching solution on the kinetics of chemical etching by experiment. Random forest was trained using 400 chemical etching reaction rates under different operating conditions. Base on machine learning model training, the random forest demonstrated strong predictive capability with an R-2 exceeding 0.9. Additionally, the impacts of chemical etching kinetics were analyzed and the machine learning model was evaluated by etching experiments. The relative importance of chemical etching kinetics conditions was reaction time > the viscosity of solution > the amount of thickener added > reaction temperature > the amount of sodium gluconate added > the amount of water reducer added. Finally, a high-accuracy chemical etching kinetics model was established.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 50 条
  • [21] Prediction of FLG genotype using human and computer-aided phenotype extraction with random forest machine learning
    Thomas, Bjorn R.
    Steele, Lloyd
    Tanaka, Reiko J.
    O'Toole, Edel A.
    BRITISH JOURNAL OF DERMATOLOGY, 2022, 187 : 44 - 45
  • [22] Spatial prediction of soil water retention in a Paramo landscape: Methodological insight into machine learning using random forest
    Blanco, Carlos M. Guio
    Gomez, Victor M. Brito
    Crespo, Patricio
    Liess, Mareike
    GEODERMA, 2018, 316 : 100 - 114
  • [23] Leptospirosis modelling using hydrometeorological indices and random forest machine learning
    Jayaramu, Veianthan
    Zulkafli, Zed
    De Stercke, Simon
    Buytaert, Wouter
    Rahmat, Fariq
    Rahman, Ribhan Zafira Abdul
    Ishak, Asnor Juraiza
    Tahir, Wardah
    Ab Rahman, Jamalludin
    Fuzi, Nik Mohd Hafiz Mohd
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2023, 67 (03) : 423 - 437
  • [24] Classification of Phishing Email Using Random Forest Machine Learning Technique
    Akinyelu, Andronicus A.
    Adewumi, Aderemi O.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [25] Leptospirosis modelling using hydrometeorological indices and random forest machine learning
    Veianthan Jayaramu
    Zed Zulkafli
    Simon De Stercke
    Wouter Buytaert
    Fariq Rahmat
    Ribhan Zafira Abdul Rahman
    Asnor Juraiza Ishak
    Wardah Tahir
    Jamalludin Ab Rahman
    Nik Mohd Hafiz Mohd Fuzi
    International Journal of Biometeorology, 2023, 67 : 423 - 437
  • [26] A machine learning model using the snapshot ensemble approach for soil respiration prediction in an experimental Oak Forest
    Ferdous, S. N.
    Ahire, J. P.
    Bergman, R.
    Xin, L.
    Blanc-Betes, E.
    Zhang, Z.
    Wang, J.
    ECOLOGICAL INFORMATICS, 2025, 85
  • [27] Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data
    Armeli, Gianluca
    Peters, Jan-Hendrik
    Koop, Thomas
    ACS OMEGA, 2023, 8 (13): : 12298 - 12309
  • [28] Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest)
    Luming Zhang
    Tao Huang
    Fengshuo Xu
    Shaojin Li
    Shuai Zheng
    Jun Lyu
    Haiyan Yin
    BMC Emergency Medicine, 22
  • [29] Experimental study and development of machine learning model using random forest classifier on shear strength prediction of RC beam with externally bonded GFRP composites
    Al Mamari A.H.S.
    Al Ghafri R.S.H.H.
    Aravind N.
    Dhandapani R.
    Al Hatali E.M.A.M.
    Pandian R.
    Asian Journal of Civil Engineering, 2023, 24 (1) : 267 - 286
  • [30] Prediction of Glass Chemical Composition and Type Identification Based on Machine Learning Algorithms
    Chen, Ziwei
    Xu, Yang
    Zhang, Chao
    Tang, Min
    APPLIED SCIENCES-BASEL, 2024, 14 (10):