Inference on overlapping coefficient in two exponential populations based on adaptive type-II progressive hybrid censoring

被引:0
|
作者
Helu, Amal [1 ]
机构
[1] Univ Jordan, Dept Math, Amman, Jordan
关键词
Bootstrap method; Matusita's measure; Morisita's measure; Weitzman's measure; Adaptive type-II progressive hybrid censoring; CONFIDENCE-INTERVAL ESTIMATION; SURVIVAL ANALYSIS; SIMILARITY; LIFE;
D O I
10.1007/s13370-024-01222-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article considers a life test scheme called the adaptive type-II progressive hybrid censoring scheme introduced by Ng et al. (Naval Res Logist 5(8):687-698, 2009). Based on this type of censoring, we draw inferences about the three well-known measures of overlap, namely Matusita's measure (rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho $$\end{document}), Morisita's measure (lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}), and Weitzman's (Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}) for two exponential populations with different means. The asymptotic bias and variance of the overlap measure estimators are derived. Monte Carlo evaluations are employed in cases with small sample sizes, where computing the precision or bias of these estimators becomes challenging due to the lack of closed-form expressions for their variances and exact sampling distributions. Confidence intervals for those measures are also constructed via the bootstrap method and Taylor expansion approximation. To emphasize the practical relevance of our proposed estimators, we illustrate their application using a real data set from head and neck cancer research.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring
    Shrahili, Mansour
    Alotaibi, Naif
    Kumar, Devendra
    Alyami, Salem A.
    MATHEMATICS, 2020, 8 (11) : 1 - 20
  • [42] Exact likelihood inference of the exponential parameter under generalized Type II progressive hybrid censoring
    Kyeongjun Lee
    Hokeun Sun
    Youngseuk Cho
    Journal of the Korean Statistical Society, 2016, 45 : 123 - 136
  • [43] Poisson–logarithmic half-logistic distribution with inference under a progressive-stress model based on adaptive type-II progressive hybrid censoring
    Atef F. Hashem
    Coşkun Kuş
    Ahmet Pekgör
    Alaa H. Abdel-Hamid
    Journal of the Egyptian Mathematical Society, 30 (1)
  • [44] Bayesian inference for two populations of Lomax distribution under joint progressive Type-II censoring schemes with engineering applications
    Hasaballah, Mustafa M.
    Tashkandy, Yusra A.
    Balogun, Oluwafemi Samson
    Bakr, Mahmoud E.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (08) : 4335 - 4351
  • [45] Robust Bayesian analysis for exponential parameters under generalized Type-II progressive hybrid censoring
    Seo, Jung In
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (09) : 2259 - 2277
  • [46] Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes
    Ye, Zhi-Sheng
    Chan, Ping-Shing
    Xie, Min
    Ng, Hon Keung Tony
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (05) : 1099 - 1114
  • [47] Parameters estimation for mixed generalized inverted exponential distributions with type-II progressive hybrid censoring
    Tian, Yuzhu
    Yang, Aijun
    Li, Erqian
    Tian, Maozai
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (04): : 1023 - 1039
  • [48] Inferences of inverted gompertz parameters from an adaptive type-ii progressive hybrid censoring
    Mohammed, Heba S.
    Elshahhat, Ahmed
    Alotaibi, Refah
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [49] Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme
    Nassar M.
    Abo-Kasem O.
    Zhang C.
    Dey S.
    Journal of the Indian Society for Probability and Statistics, 2018, 19 (1) : 25 - 65
  • [50] Information Geometry of the Exponential Family of Distributions with Progressive Type-II Censoring
    Zhang, Fode
    Shi, Xiaolin
    Ng, Hon Keung Tony
    ENTROPY, 2021, 23 (06)