Over-the-Air Federated Learning via Weighted Aggregation

被引:0
|
作者
Azimi-Abarghouyi, Seyed Mohammad [1 ]
Tassiulas, Leandros [2 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, S-11428 Stockholm, Sweden
[2] Yale Univ, Dept Elect Engn, Inst Network Sci, New Haven, CT 06520 USA
关键词
Wireless networks; Servers; Transmitters; Resource management; Receivers; Performance evaluation; Convergence; Federated learning; machine learning; fading multiple access channel; over-the-air computation; analog communications; MULTIPLE-ACCESS; POWER-CONTROL; EDGE; CONVERGENCE; COMPUTATION; DESIGN;
D O I
10.1109/TWC.2024.3463754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new federated learning scheme that leverages over-the-air computation. A novel feature of this scheme is the proposal to employ adaptive weights during aggregation, a facet treated as predefined in other over-the-air schemes. This can mitigate the impact of wireless channel conditions on learning performance, without needing channel state information at transmitter side (CSIT). We provide a mathematical methodology to derive the convergence bound for the proposed scheme in the context of computational heterogeneity and general loss functions, supplemented with design insights. Accordingly, we propose aggregation cost metrics and efficient algorithms to find optimized weights for the aggregation. Finally, through numerical experiments, we validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme surpasses other over-the-air strategies by an accuracy improvement of 15% over the scheme using CSIT and 30% compared to the one without CSIT.
引用
收藏
页码:18240 / 18253
页数:14
相关论文
共 50 条
  • [31] Blind Federated Learning via Over-the-Air q-QAM
    Razavikia, Saeed
    da Silva, José Mairton Barros
    Fischione, Carlo
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 19570 - 19586
  • [32] Federated Learning with Partial Gradients Over-the-Air
    Wang, Wendi
    Chen, Zihan
    Pappas, Nikolaos
    Yang, Howard H.
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [33] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [34] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438
  • [35] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [36] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [37] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [38] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [39] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [40] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496