Parameter optimization of thermal network model for aerial cameras utilizing Monte-Carlo and genetic algorithm

被引:1
|
作者
Fan, Yue [1 ]
Feng, Wei [1 ]
Ren, Zhenxing [1 ]
Liu, Bingqi [1 ]
Huang, Long [1 ]
Wang, Dazhi [2 ]
机构
[1] Chengdu Univ, Coll Mech Engn, Chengdu 610106, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
Aerial camera; Thermal network model; Parameter optimization; Monte-Carlo algorithm; Genetic algorithm; DESIGN; SYSTEM;
D O I
10.1038/s41598-024-73379-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is crucial to precisely calculate temperature utilizing thermal models, which require the determination of thermal parameters that optimally align model outcomes with experimental data. In many instances, the refinement of these models is undertaken within space instruments. This paper introduces an optimization methodology for thermal network models, with the objective of enhancing the accuracy of temperature predictions for aerial cameras. The investigation of internal convective heat transfer coefficients for both cylindrical and planar structures provides an estimation of convective thermal parameters. Based on the identification of thermally sensitive parameters and the reliability evaluation of transient temperature data through the Monte-Carlo simulation, the genetic algorithm is employed to search for global optimal parameter values that minimize the root mean square error (RMSE) between calculated and measured node temperatures. As a result, the optimized model shows significantly improved accuracy in temperature prediction, attaining an RMSE of 1.07 degrees C and reducing the maximum relative error between predicted and experimental results from 33.8 to 3.1%. Furthermore, the flight simulation and thermal control experiments validate the robustness of the optimized model, demonstrating that discrepancies between the observed and predicted temperatures are within 2 degrees C after re-correcting the external convection heat transfer coefficient value.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Monte-Carlo Implementation of the SAGE Algorithm for Joint Soft Multiuser and Channel Parameter Estimation
    Panayirci, E.
    Kocian, A.
    Poor, H. V.
    Ruggieri, M.
    SPAWC: 2009 IEEE 10TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2009, : 702 - +
  • [22] Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows
    Rimmel, Arpad
    Teytaud, Fabien
    Cazenave, Tristan
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT II, 2011, 6625 : 501 - +
  • [23] Heuristic Model Checking using a Monte-Carlo Tree Search Algorithm
    Poulding, Simon
    Feldt, Robert
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1359 - 1366
  • [24] Lumped Parameter Thermal Network Modeling and Thermal Optimization Design of an Aerial Camera
    Fan, Yue
    Feng, Wei
    Ren, Zhenxing
    Liu, Bingqi
    Wang, Dazhi
    SENSORS, 2024, 24 (12)
  • [25] Integration of Genetic Algorithm and Monte Carlo Simulation for System Design and Cost Allocation Optimization in Complex Network
    Baladeh, Aliakbar Eslami
    Khakzad, Nima
    2018 3RD INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS), 2018, : 182 - 186
  • [26] Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling
    Jeremiah, Erwin
    Sisson, Scott A.
    Sharma, Ashish
    Marshall, Lucy
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 38 : 283 - 295
  • [27] PRESTA - THE PARAMETER REDUCED ELECTRON-STEP TRANSPORT ALGORITHM FOR ELECTRON MONTE-CARLO TRANSPORT
    BIELAJEW, AF
    ROGERS, DWO
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1987, 18 (02): : 165 - 181
  • [28] SUBLATTICE ORDER PARAMETER IN THE BCSOS MODEL - A FINITE-SIZE MONTE-CARLO STUDY
    MAZZEO, G
    JUG, G
    LEVI, AC
    TOSATTI, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (15): : L967 - L973
  • [29] A NEW MULTISPIN CODING ALGORITHM FOR MONTE-CARLO SIMULATION OF THE ISING-MODEL
    WILLIAMS, GO
    KALOS, MH
    JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (3-4) : 283 - 299
  • [30] AN EFFECTIVE ALGORITHM FOR THE MONTE-CARLO SIMULATION OF THE ISING-MODEL ON A VECTOR PROCESSOR
    ITO, N
    KANADA, Y
    SUPERCOMPUTER, 1988, 5 (03): : 31 - 44