Intuitionistic Fuzzy Recurrence Plots for Classifying Cardiac Arrhythmias Using Deep Learning

被引:0
|
作者
Mujica-Vargas, Dante [1 ]
Vela-Rincon, Virna V. [1 ]
Luna-alvarez, Antonio [2 ]
Muniz, Andres Antonio Arenas [1 ]
机构
[1] Tecnol Nacl Mexico, Dept Ciencias Computac, CENIDET, Cuernavaca, Morelos, Mexico
[2] Inst Tecnol Chilpancingo, Tecnol Nacl Mexico, Div Estudios Posgrad & Invest, Chilpancingo, Guerrero, Mexico
关键词
CONVOLUTIONAL NEURAL-NETWORKS; IMPACT;
D O I
10.1134/S0361768824700683
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article proposes a method for the classification of different types of cardiac arrhythmias through a deep learning model that utilizes recurrence graphs constructed through a fuzzy intuitionistic clustering technique. The utilization of recurrence graphs is predicated on their capacity to encapsulate the pertinent information of the ECG signal into a succinct graphical representation, thereby facilitating the analysis and identification of aberrant patterns. To substantiate the efficacy of the proposed method, ten deep learning models with disparate configurations were trained, and the outcomes were contrasted with those of existing methodologies in the literature. The findings demonstrate an exceptional performance, with an accuracy of 98%, underscoring the promise of recurrence graphs and convolutional neural networks in signal analysis.
引用
收藏
页码:662 / 673
页数:12
相关论文
共 50 条
  • [21] Application of Recurrence Plots and VGG Deep Learning Model to the Study of Condition Monitoring of Robotic Grinding
    Kuan-Jung Chung
    Cheng-Han Dai
    Tung-Chun Chiang
    June-Jia Xie
    Ming-Tzer Lin
    International Journal of Precision Engineering and Manufacturing, 2023, 24 : 1675 - 1683
  • [22] Classifying WiFi "Physical Fingerprints" using Complex Deep Learning
    Smith, Logan
    Smith, Nicholas
    Hopkins, Joshua
    Rayborn, Daniel
    Ball, John E.
    Tang, Bo
    Young, Maxwell
    AUTOMATIC TARGET RECOGNITION XXX, 2020, 11394
  • [23] Convoluted Cosmos: Classifying Galaxy Images Using Deep Learning
    Misra, Diganta
    Mohanty, Sachi Nandan
    Agarwal, Mohit
    Gupta, Suneet K.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 1, 2020, 1042 : 569 - 579
  • [24] Classifying aneuploidy in genotype intensity data using deep learning
    Bouwman, Aniek C.
    Hulsegge, Ina
    Hawken, Rachel J.
    Henshall, John M.
    Veerkamp, Roel F.
    Schokker, Dirkjan
    Kamphuis, Claudia
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (03) : 304 - 315
  • [25] Classifying Breast Cytological Images using Deep Learning Architectures
    Zerouaoui, Hasnae
    Idri, Ali
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 557 - 564
  • [26] Classifying Argument Component using Deep Learning on English Dataset
    Gunawan W.
    Suhartono D.
    Informatica (Slovenia), 2023, 47 (05): : 63 - 68
  • [27] Classifying Maqams of Qur'anic Recitations Using Deep Learning
    Shahriar, Sakib
    Tariq, Usman
    IEEE ACCESS, 2021, 9 : 117271 - 117281
  • [28] Classifying Modulations in Communication Intelligence Using Deep Learning Networks
    Yahya BENREMDANE
    Said JAMAL
    Oumaima TAHERI
    Jawad LAKZIZ
    Said OUASKIT
    JournalofSystemsScienceandInformation, 2024, 12 (03) : 379 - 392
  • [29] Classifying Retinal Degeneration in Histological Sections Using Deep Learning
    Al Mouiee, Daniel
    Meijering, Erik
    Kalloniatis, Michael
    Nivison-Smith, Lisa
    Williams, Richard A.
    Nayagam, David A. X.
    Spencer, Thomas C.
    Luu, Chi D.
    McGowan, Ceara
    Epp, Stephanie B.
    Shivdasani, Mohit N.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (07):
  • [30] Classifying IoT security risks using Deep Learning algorithms
    Abbass, Wissam
    Bakraouy, Zineb
    Baina, Amine
    Bellafkih, Mostafa
    2018 6TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2018, : 205 - 210