Convolution operators and variable Hardy spaces on the Heisenberg group

被引:0
|
作者
Rocha, P. [1 ]
机构
[1] Univ Nacl Sur, Dept Matemat, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
variable Hardy space; atomic decomposition; convolution operator; Heisenberg group;
D O I
10.1007/s10474-024-01484-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{H}<^>{n}$$\end{document} be the Heisenberg group. For 0 <=alpha<Q=2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leq \alpha < Q=2n+2$$\end{document} and N is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \in \mathbb{N}$$\end{document} we consider exponent functions p(<middle dot>):Hn ->(0,+infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p (\cdot) \colon \mathbb{H}<^>{n} \to (0, +\infty)$$\end{document}, which satisfy log-H & ouml;lder conditions, such that QQ+N<p-<= p(<middle dot>)<= p+<Q alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{Q}{Q+N} < p_{-} \leq p (\cdot) \leq p_{+} < \frac{Q}{\alpha}$$\end{document}. In this article we prove the Hp(<middle dot>)(Hn)-> Lq(<middle dot>)(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{p (\cdot)}(\mathbb{H}<^>{n}) \to L<^>{q (\cdot)}(\mathbb{H}<^>{n})$$\end{document} and Hp(<middle dot>)(Hn)-> Hq(<middle dot>)(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{p (\cdot)}(\mathbb{H}<^>{n}) \to H<^>{q (\cdot)}(\mathbb{H}<^>{n})$$\end{document} boundedness of convolution operators with kernels of type (alpha,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha, N)$$\end{document} on Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{H}<^>{n}$$\end{document}, where 1q(<middle dot>)=1p(<middle dot>)-alpha Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{q (\cdot)} = \frac{1}{p (\cdot)} - \frac{\alpha}{Q}$$\end{document}. In particular, the Riesz potential on Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{H}<^>{n}$$\end{document} satisfies such estimates.
引用
收藏
页码:429 / 452
页数:24
相关论文
共 50 条
  • [31] Fractional Type Integral Operators on Variable Hardy Spaces
    Rocha, P.
    Urciuolo, M.
    ACTA MATHEMATICA HUNGARICA, 2014, 143 (02) : 502 - 514
  • [32] Isomorphisms of variable Hardy spaces associated with Schrodinger operators
    Zhang, Junqiang
    Yang, Dachun
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 39 - 66
  • [33] Lp and BMO bounds for weighted Hardy operators on the Heisenberg group
    Chu, Jie Ying
    Fu, Zun Wei
    Wu, Qing Yan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [34] Integral operators with variable kernels on weak Hardy spaces
    Ding, Y
    Lu, SZ
    Shao, SL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) : 127 - 135
  • [35] Commutators of integral operators with variable kernels on Hardy spaces
    Zhang, P
    Zhao, K
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04): : 399 - 410
  • [36] Fractional Type Integral Operators on Variable Hardy Spaces
    P. Rocha
    M. Urciuolo
    Acta Mathematica Hungarica, 2014, 143 : 502 - 514
  • [37] Commutators of integral operators with variable kernels on Hardy spaces
    Pu Zhang
    Kai Zhao
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 : 399 - 410
  • [38] Sublinear operators on weighted Hardy spaces with variable exponents
    Ho, Kwok-Pun
    FORUM MATHEMATICUM, 2019, 31 (03) : 607 - 617
  • [39] Convolution operators with singular measures of fractional type on the Heisenberg group
    Godoy, Tomas
    Rocha, Pablo
    STUDIA MATHEMATICA, 2019, 245 (03) : 213 - 228
  • [40] Convolution operators in matrix weighted, variable Lebesgue spaces
    Cruz-Uribe, David
    Penrod, Michael
    ANALYSIS AND APPLICATIONS, 2024, 22 (07) : 1133 - 1157