A Laplacian-based quantum graph neural networks for quantum semi-supervised learning

被引:0
|
作者
Gholipour, Hamed [1 ,2 ]
Bozorgnia, Farid [3 ]
Hambarde, Kailash [1 ]
Mohammadigheymasi, Hamzeh [1 ,4 ,5 ]
Mancilla, Javier [6 ]
Sequeira, Andre [7 ]
Neves, Joao [1 ]
Proenca, Hugo [8 ]
Challenger, Moharram [9 ,10 ]
机构
[1] Univ Beira Interior, Dept Comp Sci, Covilha, Portugal
[2] RAUVA Co, Lisbon, Portugal
[3] New Uzbekistan Univ, Dept Math, Tashkent, Uzbekistan
[4] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Japan
[5] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA USA
[6] Falcolande Co, Vigo, Spain
[7] INESC TEC, Dept Informat, High Assurance Software Lab, Braga, Portugal
[8] Univ Beira Interior, Inst Telecomunicacoes, Covilha, Portugal
[9] Univ Antwerp, Dept Comp Sci, Antwerp, Belgium
[10] Flanders Make Strateg Res Ctr, AnSyMo Cosys Core Lab, Leuven, Belgium
关键词
Quantum semi-supervised learning (QSLL); Quantum graph learning; Parametrized quantum circuits; Laplacian QSSL; Entanglement; Test accuracy;
D O I
10.1007/s11128-025-04725-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets-Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Active and Semi-Supervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Lv, Shengze
    Qian, Yuhua
    Wen, Chao
    Liang, Jiye
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (04) : 920 - 932
  • [22] MGLNN: Semi-supervised learning via Multiple Graph Cooperative Learning Neural Networks
    Jiang, Bo
    Chen, Si
    Wang, Beibei
    Luo, Bin
    NEURAL NETWORKS, 2022, 153 : 204 - 214
  • [23] SEMI-SUPERVISED MULTIMODALITY LEARNING WITH GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR DISEASE DIAGNOSIS
    Huang, Yongxiang
    Chung, Albert C. S.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2451 - 2455
  • [24] Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints
    Haiqi Zhang
    Guangquan Lu
    Mengmeng Zhan
    Beixian Zhang
    Neural Processing Letters, 2022, 54 : 2645 - 2656
  • [25] Semi-supervised classification by graph p-Laplacian convolutional networks
    Fu, Sichao
    Liu, Weifeng
    Zhang, Kai
    Zhou, Yicong
    Tao, Dapeng
    INFORMATION SCIENCES, 2021, 560 : 92 - 106
  • [26] Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints
    Zhang, Haiqi
    Lu, Guangquan
    Zhan, Mengmeng
    Zhang, Beixian
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2645 - 2656
  • [27] Sparse feature selection using hypergraph Laplacian-based semi-supervised discriminant analysis
    Sheikhpour, Razieh
    Berahmand, Kamal
    Mohammadi, Mehrnoush
    Khosravi, Hassan
    PATTERN RECOGNITION, 2025, 157
  • [28] Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
    Vashishth, Shikhar
    Yadav, Prateek
    Bhandari, Manik
    Talukdar, Partha
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [29] Graph Ensemble Networks for Semi-supervised Embedding Learning
    Tang, Hui
    Liang, Xun
    Wu, Bo
    Guan, Zhenyu
    Guo, Yuhui
    Zheng, Xiangping
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 408 - 420
  • [30] Semi-supervised Learning with Graph Learning-Convolutional Networks
    Jiang, Bo
    Zhang, Ziyan
    Lin, Doudou
    Tang, Jin
    Luo, Bin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11305 - 11312