Strain, pressure and temperature effects on linear and nonlinear optical properties of InP/InAs1-xPx/InP quantum well heterostructures

被引:0
|
作者
Davlatov, A. B. [1 ]
Hameed, A. H. [2 ,3 ]
Feddi, K. [4 ]
Baymatov, P. J. [1 ]
Abdulazizov, B. T. [1 ]
Abdukarimov, A. A. [1 ]
Al-Shatravi, A. G. [5 ]
Al-Khursan, A. H. [2 ,5 ]
Perez, L. M. [6 ]
Laroze, D. [7 ]
Feddi, E. [8 ]
机构
[1] Namangan State Univ, 161 Boburshox St, Namangan 160107, Uzbekistan
[2] Univ Thi Qar, Coll Sci, Nasiriya Nanotechnol Res Lab NNRL, Nasiriya, Iraq
[3] Gen Directorate Educ, Thi Qar, Iraq
[4] Int Univ Rabat, Renewable Energy & Adv Mat Lab, Rabat, Morocco
[5] Univ Thi Qar, Coll Sci, Dept Phys, Nasiriya, Iraq
[6] Univ Tarapaca, Dept Ingn Ind & Sistemas, Casilla 7D, Arica, Chile
[7] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[8] Mohammed VI Polytech Univ, Inst Appl Phys, Lot 660, Hay Moulay Rachid 43150, Ben Guerir, Morocco
来源
关键词
Quantum well; <italic>InAsP/InP</italic>; Hydrostatic pressure; Temperature; Linear absorption; Nonlinear absorption; Second harmonic generation; Third-harmonic generation; 3RD HARMONIC-GENERATION; 2ND-HARMONIC GENERATION; TERAHERTZ EMISSION; RECTIFICATION; NONPARABOLICITY; LAYER; 2ND;
D O I
10.1007/s00339-024-08057-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optimizing the parameters that control the InAsP/InP quantum well (QW) system is of utmost importance for this system to give the best yield. Beginning from QW energy levels and momentum matrix element calculation, this work studies linear, nonlinear absorption and refractive index change, second harmonic generation (SHG), and third-harmonic generation (THG) in InAsP/InP QWs. Parameters controlling the structure, like hydrostatic pressure, temperature, well width, and phosphor mole fraction, are studied. The results show that the difference between energy levels increases with increasing temperature or reducing pressure. These differences are essential in obtaining SHG and THG. Pressure is more effective than the temperature in changing energy differences while increasing phosphor reduces the energy difference. So, one can choose the adjusted parameter (pressure or composition) according to the change in energy required. The pressure reduces absorption while temperature increases it. Increasing phosphor mole fraction reduces absorption; at high mole fraction, the absorption is approximately constant. The total refractive index change (RIC) is reduced with pressure or increasing molarity, but the higher molarity increases RIC. Increasing phosphor mole fraction reduced SHG and vice versa to THG. Increasing temperature increases SHG, and blue shifts its peak. For the pressure, it reduces SHG and redshifts its peak. Pressure increases THG and redshifts its peak while the temperature blue shifts THG peak. The effect of the temperature on the peak of the THG depends on the pressure: the temperature reduces the peak at low pressure, while the temperature increases it at high pressure. The results show the importance of such a study because the optical properties do not have a single-parameter effect; it has an interference effect of many parameters to produce the result.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Temperature Dependent Optical Transitions in InAs0.8P0.2/InP Quantum Well Wire
    Saravanan, S.
    Peter, A. John
    JOURNAL OF ADVANCED PHYSICS, 2016, 5 (01) : 18 - 24
  • [22] Dynamics of nonlinear optical properties in InxGa1-xAs/InP quantum-well waveguides
    Cacciatore, C
    Faustini, L
    Leo, G
    Coriasso, C
    Campi, D
    Stano, A
    Rigo, C
    PHYSICAL REVIEW B, 1997, 55 (08) : R4883 - R4886
  • [23] Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires
    Anufriev, Roman
    Barakat, Jean-Baptiste
    Patriarche, Gilles
    Letartre, Xavier
    Bru-Chevallier, Catherine
    Harmand, Jean-Christophe
    Gendry, Michel
    Chauvin, Nicolas
    NANOTECHNOLOGY, 2015, 26 (39)
  • [24] Optical properties of columnar InAs quantum dots on InP for semiconductor optical amplifiers
    Kawaguchi, Kenichi
    Yasuoka, Nami
    Ekawa, Mitsuru
    Ebe, Hiroji
    Akiyama, Tomoyuki
    Sugawara, Mitsuru
    Arakawa, Yasuhiko
    APPLIED PHYSICS LETTERS, 2008, 93 (12)
  • [25] Optical properties of submonolayer InAs/InP quantum dots on vicinal surfaces
    Paki, P
    Leonelli, R
    Isnard, L
    Masut, RA
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (12) : 6789 - 6792
  • [26] Optical properties of Si-doped InAs/InP quantum dots
    Hwang, H
    Park, K
    Kang, JH
    Yoon, S
    Yoon, E
    CURRENT APPLIED PHYSICS, 2003, 3 (05) : 465 - 468
  • [27] Optical properties of ultrathin InAs quantum-well-heterostructures
    Samti, R.
    Raouafi, F.
    Chaouach, M.
    Maaref, M.
    Sakri, A.
    Even, J.
    Gerard, J-M.
    Jancu, J-M
    APPLIED PHYSICS LETTERS, 2012, 101 (01)
  • [28] Erratum to: “Structural and electrical properties of InAlAs/InGaAs/InAlAs HEMT heterostructures on InP substrates with InAs inserts in quantum well”
    G. B. Galiev
    A. L. Vasiliev
    R. M. Imamov
    E. A. Klimov
    P. P. Maltsev
    S. S. Pushkarev
    M. Yu. Presniakov
    I. N. Trunkin
    Crystallography Reports, 2015, 60 : 449 - 449
  • [29] Quantum Interference in a Room Temperature InAs/InP Quantum Dot Semiconductor Optical Amplifier
    Khanonkin, Igor
    Mishra, Akhilesh K.
    Karni, Ouri
    Reithmaier, Johann P.
    Eisenstein, Gadi
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [30] Effects of interface-layers composition and strain distribution on the optical transitions of InAs quantum dots on InP
    Folliot, H
    Loualiche, S
    Lambert, B
    Drouot, V
    Le Corre, A
    PHYSICAL REVIEW B, 1998, 58 (16) : 10700 - 10704