Global Strong Solution to the Cauchy Problem of One-dimensional Viscous Two-fluid MHD Model

被引:0
|
作者
Tao, Qiang [1 ]
Zhai, Yuxin [1 ]
机构
[1] Shenzhen Univ, Sch Math Sci, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会;
关键词
Viscous two-fluid MHD model; Global strong solutions; Vacuum; Large initial data; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; ASYMPTOTIC ANALYSIS; 2-PHASE MODEL; EXISTENCE; STABILITY; FLOW;
D O I
10.1007/s40840-024-01785-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study on the Cauchy problem of one-dimensional compressible viscous two-fluid MHD model and establish the global existence and uniqueness of strong solutions for large initial data. The initial density is permitted to vanish and even can have compact support. By introducing the flow map Lagrangian coordinate, the uniform upper bounds on the density is obtained.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model
    Huang, Lan
    Yang, Xin-Guang
    Lu, Yongjin
    Wang, Taige
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [32] Global classical solution for a three-dimensional viscous liquid-gas two-fluid flow model with vacuum
    Lei Yao
    Jing Yang
    Zhen-hua Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 989 - 1006
  • [33] Global Classical Solution for a Three-dimensional Viscous Liquid-gas Two-fluid Flow Model with Vacuum
    Lei YAO
    Jing YANG
    Zhen-hua GUO
    Acta Mathematicae Applicatae Sinica, 2014, (04) : 989 - 1006
  • [34] Global classical solution for a three-dimensional viscous liquid-gas two-fluid flow model with vacuum
    Yao, Lei
    Yang, Jing
    Guo, Zhen-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 989 - 1006
  • [35] STABILIZATION OF CAUCHY PROBLEM SOLUTION FOR ONE-DIMENSIONAL PARABOLIC EQUATION
    GUSHCHIN, AK
    MIKHAILO.VP
    DOKLADY AKADEMII NAUK SSSR, 1971, 197 (02): : 257 - &
  • [36] One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
    Samaan, Angail A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [37] A two-fluid, MHD coronal model
    Suess, ST
    Wang, AH
    Wu, ST
    Poletto, G
    McComas, DJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A3) : 4697 - 4708
  • [38] Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics
    Zhang, Jianwen
    Xie, Feng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) : 1853 - 1882
  • [39] THE CAUCHY PROBLEM FOR A COMPRESSIBLE GENERIC TWO-FLUID MODEL WITH LARGE INITIAL DATA: GLOBAL EXISTENCE AND UNIQUENESS
    Wen, Huanyao
    Zhang, Xingyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (01) : 121 - 159
  • [40] Spin picture of the one-dimensional Hubbard model: Two-fluid structure and phase dynamics
    Montorsi, A
    Penna, V
    PHYSICAL REVIEW B, 1999, 60 (17) : 12069 - 12078