Effectiveness of encoder-decoder deep learning approach for colorectal polyp segmentation in colonoscopy images

被引:0
|
作者
Hamza, Ameer [1 ]
Bilal, Muhammad [2 ,3 ]
Ramzan, Muhammad [4 ]
Malik, Nadia [4 ,5 ]
机构
[1] Univ Sargodha, Fac Comp & IT, Dept Comp Sci, Sargodha 40100, Pakistan
[2] Univ Florida, Dept Pharmaceut Outcomes & Policy, Gainesville, FL 32610 USA
[3] Natl Univ Comp & Emerging Sci, Dept Software Engn, Islamabad 44000, Pakistan
[4] Univ Sargodha, Fac Comp & Informat Technol, Dept Software Engn, Sargodha 40100, Pakistan
[5] COMSATS Univ Islamabad, Dept Management Sci, Islamabad 45550, Pakistan
关键词
Medical Image Segmentation; Semantic Segmentation; Polyp Segmentation; Deep Learning; Kvasir-SEG; CVC-ClinicDB; MISS RATE; NETWORK;
D O I
10.1007/s10489-024-06167-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Colorectal cancer is considered one of the deadliest diseases, contributing to an alarming increase in annual deaths worldwide, with colorectal polyps recognized as precursors to this malignancy. Early and accurate detection of these polyps is crucial for reducing the mortality rate of colorectal cancer. However, the manual detection of polyps is a time-consuming process and requires the expertise of trained medical professionals. Moreover, it often misses polyps due to their varied size, color, and texture. Computer-aided diagnosis systems offer potential improvements, but they often struggle with precision in complex visual environments. This study presents an enhanced deep learning approach using encoder-decoder architecture for colorectal polyp segmentation to capture and utilize complex feature representations. Our approach introduces an enhanced dual attention mechanism, combining spatial and channel-wise attention to focus precisely on critical features. Channel-wise attention, implemented via an optimized Squeeze-and-Excitation (S&E) block, allows the network to capture comprehensive contextual information and interrelationships among different channels, ensuring a more refined feature selection process. The experimental results showed that the proposed model achieved a mean Intersection over Union (IoU) of 0.9054 and 0.9277, a dice coefficient of 0.9006 and 0.9128, a precision of 0.8985 and 0.9517, a recall of 0.9190 and 0.9094, and an accuracy of 0.9806 and 0.9907 on the Kvasir-SEG and CVC-ClinicDB datasets, respectively. Moreover, the proposed model outperforms the existing state-of-the-art resulting in improved patient outcomes with the potential to enhance the early detection of colorectal polyps.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Semantic segmentation method of underwater images based on encoder-decoder architecture
    Wang, Jinkang
    He, Xiaohui
    Shao, Faming
    Lu, Guanlin
    Hu, Ruizhe
    Jiang, Qunyan
    PLOS ONE, 2022, 17 (08):
  • [32] An encoder-decoder deep neural network for binary segmentation of seismic facies
    Lima, Gefersom
    Zeiser, Felipe Andre
    Da Silveira, Ariane
    Rigo, Sandro
    Ramos, Gabriel de Oliveira
    COMPUTERS & GEOSCIENCES, 2024, 183
  • [33] A Deep Convolutional Encoder-Decoder Architecture for Retinal Blood Vessels Segmentation
    Adeyinka, Adegun Adekanmi
    Adebiyi, Marion Olubunmi
    Akande, Noah Oluwatobi
    Ogundokun, Roseline Oluwaseun
    Kayode, Anthonia Aderonke
    Oladele, Tinuke Omolewa
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT V: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 14, 2019, PROCEEDINGS, PART V, 2019, 11623 : 180 - 189
  • [34] Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation
    Kim, Jung Uk
    Kim, Hak Gu
    Ro, Yong Man
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 685 - 688
  • [35] Deep Convolutional Encoder-Decoder Network with Model Uncertainty for Semantic Segmentation
    Isobe, Shuya
    Arai, Shuichi
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 365 - 370
  • [36] An Auto Encoder-Decoder Approach to Classify the Bird Sounds Using Deep Learning Techniques
    Vamsi B.
    Mahanty M.
    Doppala B.P.
    SN Computer Science, 4 (3)
  • [37] DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images
    Xu, Guoping
    Cao, Hanqiang
    Udupa, Jayaram K.
    Tong, Yubing
    Torigian, Drew A.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [38] A multimodal deep learning approach for hurricane tack forecast based on encoder-decoder framework
    Wang, Wennan
    Lu, Jiadong
    Zhu, Linkai
    Dai, Shugeng
    Song, Shiyang
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (04)
  • [39] Encoder-decoder network with RMP for tongue segmentation
    Kusakunniran, Worapan
    Borwarnginn, Punyanuch
    Karnjanapreechakorn, Sarattha
    Thongkanchorn, Kittikhun
    Ritthipravat, Panrasee
    Tuakta, Pimchanok
    Benjapornlert, Paitoon
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (05) : 1193 - 1207
  • [40] A Convolutional Encoder-Decoder Architecture for Retinal Blood Vessel Segmentation in Fundus Images
    Lu, Yiqin
    Zhou, Yeping
    Qin, Jiancheng
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 1071 - 1075