Effects of nitrogen deposition on soil nitrogen fractions and enzyme activities in wet meadow of the Qinghai-Tibet Plateau

被引:0
|
作者
Wu, Jiangqi [1 ,4 ]
Wang, Haiyan [2 ]
Li, Guang [4 ]
Chen, Nan [3 ]
机构
[1] Gansu Agr Univ, Key Lab Grassland Ecosyst, Minist Educ, Lanzhou 730070, Peoples R China
[2] Lanzhou City Univ, Lanzhou 730070, Peoples R China
[3] Wushan Cty Prod Promot Ctr, Tianshui 741300, Peoples R China
[4] Gansu Agr Univ, Coll Forestry, Lanzhou 730070, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
Nitrogen addition; Nitrogen fractions; Enzymatic activity; Qinghai-Tibet Plateau; Soil physical properties; ORGANIC NITROGEN; CARBON; LIMITATION; ADDITIONS; GROWTH; PLANT;
D O I
10.1038/s41598-024-83285-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soil nitrogen (N) transformation is an essential portion of the N cycle in wetland ecosystems, governing the retention status of soil N by controlling the effective soil N content. N deposition produced by human activities changes the physical characteristics of soil, affecting N fractions and enzyme activities. To characterize these influences, three different N addition levels (N5, 5 g/m2; N10, 10 g/m2; N15, 15 g/m2) were established using a wet meadow on the Qinghai-Tibet Plateau (QTP) as a control treatment (0 g/m2). We investigated the features of soil physical property alterations, N fractions contents, and enzyme activities under N addition conditions throughout the peak plant growth season. Our findings indicated that N addition significantly enhanced soil aeration, porosity, total nitrogen (TN), ammonium nitrogen (NH4+), nitrate nitrogen (NO3-) content, and urease activity. At the same time, it decreased soil dissolved organic nitrogen (DON) content and bulk density (BD). Additionally, N addition treatment exerted a significant seasonal impact on soil nitrogen component content. The nitrogen component content within the surface soil (0-10 cm) under four treatments is more sensitive to N addition, whereas the nitrogen component in the deep soil is relatively stable. Principal component analysis demonstrated that soil aeration and porosity were the primary factors affecting soil N fractions and enzyme activities. The findings suggested that lower levels of N addition promoted the transformation process of soil N pools in wet meadows and exacerbated the loss of N in wetland ecosystems. Our findings indicate that sustained increases in N deposition will accelerate soil microbial N cycling, potentially overcoming N limitation in alpine wetland ecosystems and exacerbating the risk of N loss and greenhouse gas emissions from alpine wetland surface soils.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effects of fertilization on soil nematode communities in an alpine meadow of Qinghai-Tibet plateau
    Qi, Yanwen
    Sun, Xinhang
    Peng, Sichen
    Tan, Xiaodan
    Zhou, Shurong
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [22] Nitrogen controls the net primary production of an alpine Kobresia meadow in the northern Qinghai-Tibet Plateau
    Dai, Licong
    Ke, Xun
    Du, Yangong
    Zhang, Fawei
    Li, Yikang
    Li, Qian
    Lin, Li
    Peng, Cuoji
    Shu, Kai
    Cao, Guangmin
    Guo, Xiaowei
    ECOLOGY AND EVOLUTION, 2019, 9 (15): : 8865 - 8875
  • [23] Data-driven assessment of soil total nitrogen on the Qinghai-Tibet Plateau
    Zhao, Jiahui
    Jiang, Peng
    Shen, Tongqing
    Zhang, Rongrong
    Zhang, Dawei
    Zhang, Nana
    Ting, Nie
    Ding, Kunqi
    Yang, Bin
    Tan, Changhai
    Yu, Zhongbo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 914
  • [24] The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau
    WANG WenYing 1
    2 Northwest Institute of Plateau Biology
    3 Center for Agricultural Resources Research
    ScienceChina(EarthSciences), 2012, 55 (10) : 1688 - 1695
  • [25] Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China
    Rui, Yichao
    Wang, Shiping
    Xu, Zhihong
    Wang, Yanfen
    Chen, Chengrong
    Zhou, Xiaoqi
    Kang, Xiaoming
    Lu, Shunbao
    Hu, Yigang
    Lin, Qiaoyan
    Luo, Caiyun
    JOURNAL OF SOILS AND SEDIMENTS, 2011, 11 (06) : 903 - 914
  • [26] The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau
    WenYing Wang
    YongGui Ma
    Jin Xu
    HuiChun Wang
    JinFu Zhu
    HuaKun Zhou
    Science China Earth Sciences, 2012, 55 : 1688 - 1695
  • [27] The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau
    Wang WenYing
    Ma YongGui
    Xu Jin
    Wang HuiChun
    Zhu JinFu
    Zhou HuaKun
    SCIENCE CHINA-EARTH SCIENCES, 2012, 55 (10) : 1688 - 1695
  • [29] Effects of rainfall amount and frequency on carbon exchange in a wet meadow ecosystem on the Qinghai-Tibet Plateau
    Wu, Jiangqi
    Wang, Haiyan
    Li, Guang
    Lu, Yanhua
    Wei, Xingxing
    CATENA, 2022, 219
  • [30] Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau
    Jiangqi Wu
    Haiyan Wang
    Guang Li
    Jianghua Wu
    Weiwei Ma
    Scientific Reports, 11