Simple difference schemes for multidimensional fractional Laplacian and fractional gradientSimple difference schemes for multidimensional...J. Kukal, M. Beneš

被引:0
|
作者
Jaromír Kukal [1 ]
Michal Beneš [2 ]
机构
[1] Czech Technical University in Prague,Department of Software Engineering, Faculty of Nuclear Sciences and Physical Engineering
[2] Czech Technical University in Prague,Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering
关键词
fractional Laplacian(primary); fractional gradient; difference scheme; principal-value integral; optimal regularization; 26A33 (primary); 34A08; 35R11; 60G22;
D O I
10.1007/s13540-025-00386-5
中图分类号
学科分类号
摘要
The fractional Laplacian and fractional gradient are operators which play fundamental role in modeling of anomalous diffusion in d-dimensional space with the fractional exponent α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}. The principal-value integrals are split into singular and regular parts where we avoid using any weight function for the approximation in the singularity neighborhood. The resulting approximation coefficients are calculated from optimal value of the singular domain radius which is only a function of the exponent α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and a given grid topology. Various difference schemes are presented for the regular rectangular grids with mesh size h>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h>0$$\end{document}, and also for the hexagonal and the dodecahedral ones. This technique enables to evaluate the fractional operators with the approximation error O(h4-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{O}(h^{4-\alpha })$$\end{document} which is verified using testing functions with known analytical expression of their fractional Laplacian and fractional gradient. Resulting formulas can be also used for the numeric solution of the fractional partial differential equations.
引用
收藏
页码:656 / 690
页数:34
相关论文
共 50 条
  • [41] AN APPROACH TO THE CONSTRUCTION OF ECONOMIC DIFFERENCE-SCHEMES FOR MULTIDIMENSIONAL NONLINEAR UNSTEADY PROBLEMS
    EGOROV, AA
    DOKLADY AKADEMII NAUK BELARUSI, 1993, 37 (01): : 15 - 18
  • [42] A CLASS OF ECONOMICAL DIFFERENCE-SCHEMES FOR SOLVING MULTIDIMENSIONAL PROBLEMS OF MATHEMATICAL PHYSICS
    ABRASHIN, VN
    MUKHA, VA
    DIFFERENTIAL EQUATIONS, 1992, 28 (10) : 1458 - 1469
  • [43] Difference schemes of second order of approximation for multidimensional elliptic equations in arbitrary area
    Samarskii, AA
    Matus, PP
    Vabishchevich, PN
    Zyl, AN
    FINITE DIFFERENCE METHODS: THEORY AND APPLICATIONS, 1999, : 221 - 227
  • [44] Nonstandard finite difference schemes for a fractional-order Brusselator system
    Ongun, Mevlude Yakit
    Arslan, Damla
    Garrappa, Roberto
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [45] On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
    A. K. Bazzaev
    M. Kh. Shkhanukov-Lafishev
    Computational Mathematics and Mathematical Physics, 2017, 57 : 133 - 144
  • [46] Maximum norm error analysis of difference schemes for fractional diffusion equations
    Ren, Jincheng
    Sun, Zhi-zhong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 299 - 314
  • [47] On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
    Bazzaev, A. K.
    Shkhanukov-Lafishev, M. Kh
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (01) : 133 - 144
  • [48] A Family of Transformed Difference Schemes for Nonlinear Time-Fractional Equations
    Qin, Hongyu
    Chen, Xiaoli
    Zhou, Boya
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [49] Nonstandard finite difference schemes for a fractional-order Brusselator system
    Mevlüde Yakıt Ongun
    Damla Arslan
    Roberto Garrappa
    Advances in Difference Equations, 2013
  • [50] A novel difference schemes for analyzing the fractional Navier- Stokese quations
    Sayevand, Khosro
    Baleanu, Dumitru
    Sahsavand, Fatemeh
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (01): : 195 - 206