Magnetic hyperthermia therapy enhances the chemoradiosensitivity of glioblastoma

被引:0
|
作者
Rivera, Daniel [1 ,2 ,3 ]
Bouras, Alexandros [1 ,2 ,3 ]
Mattioli, Milena [1 ,2 ]
Anastasiadou, Maria [3 ]
Pacentra, Anna Chiara [1 ,2 ]
Pelcher, Olivia [1 ,2 ]
Koziel, Corrine [1 ,2 ]
Schupper, Alexander J. [3 ]
Chanenchuk, Tori [3 ]
Carlton, Hayden [4 ]
Ivkov, Robert [4 ,5 ,6 ,7 ]
Hadjipanayis, Constantinos G. [1 ,2 ,3 ]
机构
[1] UPMC Hillman Canc Ctr, Brain Tumor Nanotechnol Lab, Pittsburgh, PA 15232 USA
[2] Univ Pittsburgh, Dept Neurol Surg, 200 Lothrop St, Suite F-158, Pittsburgh, PA 15213 USA
[3] Icahn Sch Med Mt Sinai, Dept Neurol Surg, New York, NY 10029 USA
[4] Johns Hopkins Univ, Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD USA
[5] Johns Hopkins Univ, Sydney Kimmel Comprehens Canc Ctr, Sch Med, Dept Oncol, Baltimore, MD USA
[6] Johns Hopkins Univ, Whiting Sch Engn, Dept Mech Engn, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Whiting Sch Engn, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Glioblastoma; Magnetic hyperthermia therapy; Magnetic iron-oxide nanoparticles; Radiation therapy; Temozolomide; Chemoradiation; STEM-LIKE CELLS; NANOPARTICLES; RADIATION; CHEMOTHERAPY; TEMOZOLOMIDE; GENERATION; EFFICACY; DELIVERY; STRESS; HSP90;
D O I
10.1038/s41598-025-95544-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glioblastoma (GBM) is the most common primary brain cancer and is resistant to standard-of-care chemoradiation therapy (CRT). Magnetic hyperthermia therapy (MHT) exposes magnetic iron oxide nanoparticles (MIONPs) to an alternating magnetic field (AMF) to generate local hyperthermia. This study evaluated MHT-mediated enhancement of CRT in preclinical GBM models. Cell viability and apoptosis were assessed in GBM cell lines after water bath heating with radiation and/or temozolomide. Heating efficiency of MIONPs after intracranial delivery was measured in healthy mice. MHT with CRT was performed in syngeneic and patient-derived xenograft (PDX) GBM tumors. Tissue sections were analyzed for gamma-H2AX, HSP90, CD4 + T cells, and microglial cells. Tumor burden and survival were assessed. Hyperthermia with radiation and temozolomide significantly reduced cell viability and increased apoptosis. Hyperthermia predominantly exhibited additive to synergistic interactions with both treatment modalities and reduced doses needed for tumor cell growth inhibition. In vivo, MHT with CRT decreased tumor burden and increased survival in PDX and syngeneic models. Immunohistochemistry showed increased gamma-H2AX, HSP90, microglial activation, and CD4 + T cells after MHT in combination with CRT. Overall, adjuvant hyperthermia enhances CRT efficacy in GBM cells, with MHT improving survival outcomes in rodents. Sufficient intracranial heating and MIONP retention for repeated treatments was achieved, supporting further clinical translation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Magnetic mesoporous silica spheres for hyperthermia therapy
    Martin-Saavedra, F. M.
    Ruiz-Hernandez, E.
    Bore, A.
    Arcos, D.
    Vallet-Regi, M.
    Vilaboa, N.
    ACTA BIOMATERIALIA, 2010, 6 (12) : 4522 - 4531
  • [22] Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review
    Sakine Shirvalilou
    Samideh Khoei
    Azam Janati Esfahani
    Mahboobeh Kamali
    Milad Shirvaliloo
    Roghayeh Sheervalilou
    Parvin Mirzaghavami
    Journal of Neuro-Oncology, 2021, 152 : 419 - 428
  • [23] The effect of curcumin in combination with radiation therapy and hyperthermia for a glioblastoma spheroid model
    Ghanbari, B.
    Riz, A. Neshasteh
    Moghaddam, Z. Hormozi
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2024, 22 (01):
  • [24] Magnetic Gel Composites for Hyperthermia Cancer Therapy
    Haering, Marleen
    Schiller, Jana
    Mayr, Judith
    Grijalvo, Santiago
    Eritja, Ramon
    Diaz Diaz, David
    GELS, 2015, 1 (02) : 135 - 161
  • [25] Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review
    Shirvalilou, Sakine
    Khoei, Samideh
    Esfahani, Azam Janati
    Kamali, Mahboobeh
    Shirvaliloo, Milad
    Sheervalilou, Roghayeh
    Mirzaghavami, Parvin
    JOURNAL OF NEURO-ONCOLOGY, 2021, 152 (03) : 419 - 428
  • [26] Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy
    Caro, Carlos
    Paez-Munoz, Jose M.
    Pernia Leal, Manuel
    Carayol, Marta
    Feijoo-Cuaresma, Monica
    Garcia-Martin, Maria L.
    ADVANCED HEALTHCARE MATERIALS, 2025, 14 (03)
  • [27] (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment
    Gupta, Ruby
    Sharma, Deepika
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2021, 205
  • [28] Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy
    de Paula, L. B.
    Primo, F. L.
    Pinto, M. R.
    Morais, P. C.
    Tedesco, A. C.
    RSC ADVANCES, 2017, 7 (15): : 9115 - 9122
  • [29] MiR-655 ENHANCES THE SENSITIVITY OF GLIOBLASTOMA TO TEMOZOLOMIDE THERAPY
    Ogawa, Daisuke
    Chiocca, E. A.
    Godlewski, Jakub
    NEURO-ONCOLOGY, 2013, 15 : 54 - 54
  • [30] Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients
    Adair, Jennifer E.
    Johnston, Sandra K.
    Mrugala, Maciej M.
    Beard, Brian C.
    Guyman, Laura A.
    Baldock, Anne L.
    Bridge, Carly A.
    Hawkins-Daarud, Andrea
    Gori, Jennifer L.
    Born, Donald E.
    Gonzalez-Cuyar, Luis F.
    Silbergeld, Daniel L.
    Rockne, Russell C.
    Storer, Barry E.
    Rockhill, Jason K.
    Swanson, Kristin R.
    Kiem, Hans-Peter
    JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (09): : 4082 - 4092