A multi-scale feature cross-dimensional interaction network for stereo image super-resolution

被引:0
|
作者
Zhang, Jingcheng [1 ]
Zhu, Yu [1 ]
Peng, Shengjun [3 ]
Niu, Axi [1 ]
Yan, Qingsen [1 ]
Sun, Jinqiu [2 ]
Zhang, Yanning [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Astronaut, Xian 710072, Peoples R China
[3] China Xian Satellite Control Ctr, Xian 710699, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image super-resolution; Multi-scale; Feature fusion; Cross-dimensional attention;
D O I
10.1007/s00530-025-01714-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, stereo image super-resolution (SSR) has achieved impressive performance by leveraging both intra-view and inter-view information. However, existing SSR methods often rely on single-scale features for stereo image feature extraction and overlook multi-dimensional feature interactions, resulting in poor visual quality with unclear and insufficiently sharp reconstruction of details. To address these issues and achieve better performance for stereo image super-resolution, we propose a multi-scale feature cross-dimensional interaction network (MFCINet) for SSR. Specifically, to fully exploit intra-view information, we design multi-scale feature extraction blocks to capture abundant multi-scale texture patterns, including the Local Feature Extraction Block (LFEB), Mesoscale Feature Extraction Block (MFEB), and Global Feature Extraction Block (GFEB). We progressively fuse smaller-scale features with larger-scale features, utilizing the local texture information contained in the smaller-scale features to refine the global structure information of the larger-scale features. To explore richer interactions of complementary features, we introduce the Cross-dimensional Attention Interaction Block (CAIB), which calculates attention between complementary features across different spatial positions and channels, facilitating comprehensive interaction among complementary features across various dimensions. Extensive experiments and ablation studies demonstrate that MFCINet better leverages intra-view and inter-view information to reconstruct clear texture details, achieving competitive results and outperforming state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Single Image Super-Resolution Using Asynchronous Multi-Scale Network
    Ji, Jiahuan
    Zhong, Baojiang
    Ma, Kai-Kuang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1823 - 1827
  • [42] Feedback Multi-scale Residual Dense Network for image super-resolution
    Lin, Zhengchun
    Li, Siyuan
    Jiang, Yunzhi
    Wang, Jing
    Luo, Qingxing
    Signal Processing: Image Communication, 2022, 107
  • [43] Lightweight multi-scale distillation attention network for image super-resolution
    Tang, Yinggan
    Hu, Quanwei
    Bu, Chunning
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [44] Multi-scale information distillation network for efficient image super-resolution
    Hu, Yanting
    Huang, Yuanfei
    Zhang, Kaibing
    KNOWLEDGE-BASED SYSTEMS, 2023, 275
  • [45] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [46] DYNAMIC MULTI-SCALE NETWORK FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Yao, Ping
    He, Peng
    Cheng, Siyuan
    Fu, Li
    Guo, Zhihao
    Zhao, Jianghong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3766 - 3769
  • [47] A lightweight multi-scale residual network for single image super-resolution
    Chen, Xiaole
    Yang, Ruifeng
    Guo, Chenxia
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1793 - 1801
  • [48] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [49] Multi-scale skip-connection network for image super-resolution
    Liu, Jing
    Ge, Jianhui
    Xue, Yuxin
    He, Wenjuan
    Sun, Qindong
    Li, Shancang
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 821 - 836
  • [50] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)