MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation

被引:0
|
作者
Zhang, Hongbin [1 ]
Zhang, Jin [1 ]
Zhong, Xuan [2 ]
Feng, Ya [1 ]
Li, Guangli [1 ]
Li, Xiong [1 ]
Lv, Jingqin [1 ]
Ji, Donghong [3 ]
机构
[1] East China Jiaotong Univ, Sch Informat & Software Engn, Nanchang, Peoples R China
[2] Jiangxi Univ Finance & Econ, Modern Ind Sch Virtual Real, Nanchang, Peoples R China
[3] Wuhan Univ, Cyber Sci & Engn Sch, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessel segmentation; Multi-scale semantics mining; Tiny details enhancement; U-Net; BLOOD-VESSELS; NET; IMAGES; PLUS;
D O I
10.1007/s40747-024-01714-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Do you need sharpened details? Asking MMDC-Net: Multi-layer multi-scale dilated convolution network for retinal vessel segmentation
    Zhong, Xiang
    Zhang, Hongbin
    Li, Guangli
    Ji, Donghong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [32] MSCNN-AM: A Multi-Scale Convolutional Neural Network With Attention Mechanisms for Retinal Vessel Segmentation
    Fu, Qilong
    Li, Shuqiu
    Wang, Xin
    IEEE ACCESS, 2020, 8 : 163926 - 163936
  • [33] MCFSA-Net: A multi-scale channel fusion and spatial activation network for retinal vessel segmentation
    Li, Rui
    Li, Zuoyong
    Fan, Haoyi
    Teng, Shenghua
    Cao, Xinrong
    JOURNAL OF BIOPHOTONICS, 2023, 16 (04)
  • [34] Retinal vessel segmentation method based on multi-scale dual-path convolutional neural network
    Fang, Tao
    Fang, Linling
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2024, 13 (02)
  • [35] AMF-NET: Attention-aware Multi-scale Fusion Network for Retinal Vessel Segmentation
    Yang, Qi
    Ma, Bingqi
    Cui, Hui
    Ma, Jiquan
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3277 - 3280
  • [36] MIA-UNet: Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation
    Yu, Linfang
    Qin, Zhen
    Ding, Yi
    Qin, Zhiguang
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (02): : 805 - 828
  • [37] A Multi-Scale Contextual Information Enhancement Network for Crack Segmentation
    Zhang, Lili
    Liao, Yang
    Wang, Gaoxu
    Chen, Jun
    Wang, Huibin
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [38] Automatic retinal vessel segmentation using multi-scale superpixel chain tracking
    Zhao, Jingliang
    Yang, Jian
    Ai, Danni
    Song, Hong
    Jiang, Yurong
    Huang, Yong
    Zhang, Luosha
    Wang, Yongtian
    DIGITAL SIGNAL PROCESSING, 2018, 81 : 26 - 42
  • [39] Retinal Blood Vessel Segmentation Based on Multi-Scale Wavelet Transform Fusion
    Feng, Tian
    Ying, Li
    Jing, Wang
    ACTA OPTICA SINICA, 2021, 41 (04)
  • [40] Retinal Vessel Segmentation Based on Multi-scale Line Detection and Morphological Transformation
    Meng, Lin
    Liu, Jing
    Feng, Yibo
    Liu, Shuxuan
    Cao, Hui
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2461 - 2466