3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology

被引:0
|
作者
Tian, Isaac Y. [1 ]
Liu, Jason [1 ]
Wong, Michael C. [2 ]
Kelly, Nisa N. [2 ]
Liu, Yong E. [2 ]
Garber, Andrea K. [3 ]
Heymsfield, Steven B. [4 ]
Curless, Brian [1 ]
Shepherd, John A. [2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA 98195 USA
[2] Univ Hawaii Manoa, Univ Hawaii, Ctr Canc, Honolulu, HI 96822 USA
[3] Univ Calif San Francisco, UCSF Sch Med, San Francisco, CA USA
[4] Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
METABOLIC SYNDROME; ALL-CAUSE; MORTALITY; OBESITY; MALNUTRITION; CANCER; RISK;
D O I
10.1038/s41746-025-01469-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Body composition prediction from 3D optical imagery has previously been studied with linear algorithms. In this study, we present a novel application of deep 3D convolutional graph networks and nonlinear Gaussian process regression for human body shape parameterization and body composition estimation. We trained and tested linear and nonlinear models with ablation studies on a novel ensemble body shape dataset containing 4286 scans. Nonlinear GPR produced up to a 20% reduction in prediction error and up to a 30% increase in precision over linear regression for both sexes in 10 tested body composition variables. Deep shape features produced 6-8% reduction in prediction error over linear PCA features for males only, and a 4-14% reduction in precision error for both sexes. All coefficients of determination (R2) for all predicted variables were above 0.86 and achieved lower estimation RMSEs than all previous work on 10 metrics of body composition.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Self normalization for continuous 3D whole body emission data in 3D PET
    Ishikawa, A
    Kitamura, K
    Mizuta, T
    Tanaka, K
    Amano, M
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 3634 - 3637
  • [42] 3D Body Shapes Estimation from Dressed-Human Silhouettes
    Song, Dan
    Tong, Ruofeng
    Chang, Jian
    Yang, Xiaosong
    Tang, Min
    Zhang, Jian Jun
    COMPUTER GRAPHICS FORUM, 2016, 35 (07) : 147 - 156
  • [43] 3D Human Body Shape and Pose Estimation from Depth Image
    Liu, Lei
    Wang, Kangkan
    Yang, Jian
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 410 - 421
  • [44] Reliability of the Styku 3D Whole-Body Scanner for the Assessment of Body Size in Athletes
    Derouchey, Joe D.
    Tomkinson, Grant R.
    Rhoades, Jesse L.
    Fitzgerald, John S.
    MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE, 2020, 24 (03) : 228 - 234
  • [45] Digimouse: a 3D whole body mouse atlas from CT and cryosection data
    Dogdas, Belma
    Stout, David
    Chatziioannou, Arion F.
    Leahy, Richard M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (03): : 577 - 587
  • [46] Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation
    Tekin, Bugra
    Marquez-Neila, Pablo
    Salzmann, Mathieu
    Fua, Pascal
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3961 - 3970
  • [47] Estimating 3-D whole-body composition from a chest CT scan
    Pu, Lucy
    Ashraf, Syed F.
    Gezer, Naciye S.
    Ocak, Iclal
    Dresser, Daniel E.
    Leader, Joseph K.
    Dhupar, Rajeev
    MEDICAL PHYSICS, 2022, 49 (11) : 7108 - 7117
  • [48] FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration
    Rong, Yu
    Shiratori, Takaaki
    Joo, Hanbyul
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1749 - 1759
  • [49] Dynamic 3D Gaze from Afar: Deep Gaze Estimation from Temporal Eye-Head-Body Coordination
    Nonaka, Soma
    Nobuhara, Shohei
    Nishino, Ko
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2182 - 2191
  • [50] Deep Learning-Based Body Shape Clustering Analysis Using 3D Body Scanner: Application of Transformer Algorithm
    Jeon, Minsoo
    Yoon, Jiwun
    Yun, Hyo Jun
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2025, 54 (01) : 133 - 143