Finite element approximation of time-dependent mean field games with nondifferentiable Hamiltonians

被引:0
|
作者
Osborne, Yohance A. P. [1 ]
Smears, Iain [2 ]
机构
[1] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
DISCRETE MAXIMUM PRINCIPLE; SEMI-LAGRANGIAN SCHEME; NONLINEAR DIFFUSION; EQUATIONS; CONVERGENCE;
D O I
10.1007/s00211-024-01447-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The standard formulation of the PDE system of Mean Field Games (MFG) requires the differentiability of the Hamiltonian. However in many cases, the structure of the underlying optimal problem leads to a convex but nondifferentiable Hamiltonian. For time-dependent MFG systems, we introduce a generalization of the problem as a Partial Differential Inclusion (PDI) by interpreting the derivative of the Hamiltonian in terms of the subdifferential set. In particular, we prove the existence and uniqueness of weak solutions to the resulting MFG PDI system under standard assumptions in the literature. We propose a monotone stabilized finite element discretization of the problem, using conforming affine elements in space and an implicit Euler discretization in time with mass-lumping. We prove the strong convergence in L-2(H-1) of the value function approximations, and strong convergence in L-p(L-2) of the density function approximations, together with strong L-2-convergence of the value function approximations at the initial time.
引用
收藏
页码:165 / 211
页数:47
相关论文
共 50 条
  • [21] Finite element approximation for time-dependent diffusion with measure-valued source
    Thomas I. Seidman
    Matthias K. Gobbert
    David W. Trott
    Martin Kružík
    Numerische Mathematik, 2012, 122 : 709 - 723
  • [22] BARRIER PENETRATION AND SPONTANEOUS FISSION IN THE TIME-DEPENDENT MEAN-FIELD APPROXIMATION
    LEVIT, S
    NEGELE, JW
    PALTIEL, Z
    PHYSICAL REVIEW C, 1980, 22 (05): : 1979 - 1995
  • [23] The time-dependent relativistic mean-field theory and the random phase approximation
    Ring, P
    Ma, ZY
    Van Giai, N
    Vretenar, D
    Wandelt, A
    Cao, LG
    NUCLEAR PHYSICS A, 2001, 694 (1-2) : 249 - 268
  • [24] Existence and non-existence for time-dependent mean field games with strong aggregation
    Cirant, Marco
    Ghilli, Daria
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1285 - 1318
  • [25] Time-Dependent Focusing Mean-Field Games: The Sub-critical Case
    Cirant, Marco
    Tonon, Daniela
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) : 49 - 79
  • [26] Existence and non-existence for time-dependent mean field games with strong aggregation
    Marco Cirant
    Daria Ghilli
    Mathematische Annalen, 2022, 383 : 1285 - 1318
  • [27] Time-Dependent Focusing Mean-Field Games: The Sub-critical Case
    Marco Cirant
    Daniela Tonon
    Journal of Dynamics and Differential Equations, 2019, 31 : 49 - 79
  • [28] SYMMETRIES OF TIME-DEPENDENT HAMILTONIANS
    STEEB, WH
    LETTERE AL NUOVO CIMENTO, 1980, 28 (16): : 547 - 550
  • [29] Nonconforming Finite Element Approximation of Time-Dependent Maxwell's Equations in Debye Medium
    Shi, Dongyang
    Yao, Changhui
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (05) : 1654 - 1673
  • [30] THE SCATTERING MATRIX OF HEAVY-ION COLLISIONS IN THE TIME-DEPENDENT MEAN FIELD APPROXIMATION
    ALHASSID, Y
    KOONIN, SE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (04): : 541 - 542