Boundedness of sublinear operators on two-weighted grand Herz spaces with variable exponent

被引:0
|
作者
Nafis, Hammad [1 ]
机构
[1] Riphah Int Univ, Dept Math & Stat, Islamabad, Pakistan
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Herz spaces; Grand spaces; Variable exponent spaces; Sublinear operators; WEIGHTED NORM INEQUALITIES; LEBESGUE SPACES; FRACTIONAL INTEGRALS; WAVELET CHARACTERIZATION; MAXIMAL OPERATOR; HARDY-SPACES; COMMUTATORS;
D O I
10.1186/s13660-025-03273-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce the concept of two-weighted grand variable Herz spaces as a natural generalization of variable Herz spaces. We establish the boundedness of sublinear operators within this framework, offering significant insights into their functional behavior. Our findings, incorporating additional weight factors, broaden the scope and applicability of our results.
引用
收藏
页数:16
相关论文
共 50 条