Nonequilibrium regimes for quasiparticles in superconducting qubits with gap-asymmetric junctions

被引:0
|
作者
Marchegiani, Giampiero [1 ]
Catelani, Gianluigi [1 ,2 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Forschungszentrum Julich, JARA Inst Quantum Informat PGI 11, Julich, Germany
来源
COMMUNICATIONS PHYSICS | 2025年 / 8卷 / 01期
关键词
STATE;
D O I
10.1038/s42005-025-02052-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting qubits hold promise for quantum computing, but their operation is challenged by various sources of noise, including excitations known as quasiparticles. Qubits with gap asymmetry larger than their transition energy are less susceptible to quasiparticle decoherence as the quasiparticles are mostly trapped in the low-gap side of the junction. Because of this trapping, the gap asymmetry can contribute to maintaining the quasiparticles out of equilibrium. Here we address the temperature dependence of the quasiparticle densities in the two sides of the junction. We show that four qualitatively different regimes are possible with increasing temperature: (i) nonequilibrium, (ii) local quasiequilibrium, (iii) global quasiequilibrium, and (iv) full equilibrium. We identify shortcomings in assuming global quasiequilibrium when interpreting experimental data, highlighting how measurements in the presence of magnetic field can aid the accurate determination of the junction parameters, and hence the identification of the nonequilibrium regimes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nonequilibrium quasiparticles and electron cooling by normal metal - Superconductor tunnel junctions
    Golubev, D
    Vasenko, A
    INTERNATIONAL WORKSHOP ON SUPERCONDUCTING NANO-ELECTRONICS DEVICES, 2002, : 165 - 174
  • [22] Reproducibility and Gap Control of Superconducting Flux Qubits
    Chang, T.
    Holzman, I
    Cohen, T.
    Johnson, B. C.
    Jamieson, D. N.
    Stern, M.
    PHYSICAL REVIEW APPLIED, 2022, 18 (06):
  • [23] Coexistence of Nonequilibrium Density and Equilibrium Energy Distribution of Quasiparticles in a Superconducting Qubit
    Connolly, Thomas
    Kurilovich, Pavel D.
    Diamond, Spencer
    Nho, Heekun
    Bottcher, Charlotte G. L.
    Glazman, Leonid I.
    Fatemi, Valla
    Devoret, Michel H.
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [24] Possibilities and Challenges of Superconducting Qubits in the Intrinsic Josephson Junctions
    Kitano, Haruhisa
    IEICE TRANSACTIONS ON ELECTRONICS, 2023, E106C (06) : 293 - 300
  • [25] Fabrication of Superconducting Qubits With Al Trilayer Josephson Junctions
    Satoh, T.
    Noguchi, Y.
    Yamagishi, M.
    Nagasawa, S.
    Hinode, K.
    Hidaka, M.
    Maezawa, M.
    Horikawa, T.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
  • [26] Nonequilibrium and relaxation effects in tunnel superconducting junctions
    Bezuglyi, E. V.
    Vasenko, A. S.
    Bratus, E. N.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2017, 30 (02):
  • [27] Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator
    de Visser, P. J.
    Goldie, D. J.
    Diener, P.
    Withington, S.
    Baselmans, J. J. A.
    Klapwijk, T. M.
    PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [28] CONDUCTANCE REGIMES IN SUPERCONDUCTING JUNCTIONS OF ATOMIC SIZE
    RODRIGO, JG
    AGRAIT, N
    VIEIRA, S
    PHYSICAL REVIEW B, 1994, 50 (01): : 374 - 379
  • [29] Superconducting phase qubits with shadow-evaporated Josephson junctions
    宿非凡
    刘伟洋
    徐晖凯
    邓辉
    李志远
    田野
    朱晓波
    郑东宁
    吕力
    赵士平
    Chinese Physics B, 2017, 26 (06) : 61 - 65
  • [30] Low-frequency noise in Josephson junctions for superconducting qubits
    Eroms, J.
    van Schaarenburg, L. C.
    Driessen, E. F. C.
    Plantenberg, J. H.
    Huizinga, C. M.
    Schouten, R. N.
    Verbruggen, A. H.
    Harmans, C. J. P. M.
    Mooij, J. E.
    APPLIED PHYSICS LETTERS, 2006, 89 (12)