Wildfire assessment using machine learning algorithms in different regions

被引:0
|
作者
Moghim, Sanaz [1 ]
Mehrabi, Majid [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Azadi Ave, Tehran, Iran
来源
FIRE ECOLOGY | 2024年 / 20卷 / 01期
基金
美国海洋和大气管理局;
关键词
Wildfire; Fire regime; Machine learning; Random forest; Logistic regression; Fire Susceptibility map; Conservation ecology; SUPPORT VECTOR MACHINE; FOREST-FIRE DANGER; LOGISTIC-REGRESSION; SPATIAL-PATTERN; CLIMATE-CHANGE; BOREAL FOREST; SUSCEPTIBILITY; CANADA; PREDICTION; PROVINCE;
D O I
10.1186/s42408-024-00335-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
BackgroundClimate change and human activities are two main forces that affect the intensity, duration, and frequency of wildfires, which can lead to risks and hazards to the ecosystems. This study uses machine learning (ML) as an effective tool for predicting wildfires using historical data and influential variables. The performance of two machine learning algorithms, including logistic regression (LR) and random forest (RF), to construct wildfire susceptibility maps is evaluated in regions with different physical features (Okanogan region in the US and Jam & eacute;sie region in Canada). The models' inputs are eleven physically related variables to output wildfire probabilities.ResultsResults indicate that the most important variables in both areas are land cover, temperature, wind, elevation, precipitation, and normalized vegetation difference index. In addition, results reveal that both models have temporal and spatial generalization capability to predict annual wildfire probability at different times and locations. Generally, the RF outperforms the LR model in almost all cases. The outputs of the models provide wildfire susceptibility maps with different levels of severity (from very high to very low). Results highlight the areas that are more vulnerable to fire. The developed models and analysis are valuable for emergency planners and decision-makers in identifying critical regions and implementing preventive action for ecological conservation. AntecedentesEl cambio clim & aacute;tico y las actividades humanas son dos de las fuerzas principales que afectan la intensidad, duraci & oacute;n, y frecuencia de los incendios, lo que puede conducir a riesgos e incertidumbres en los ecosistemas. Este estudio us & oacute; la t & eacute;cnica de aprendizaje autom & aacute;tico (machine learning) como una herramienta efectiva para predecir incendios de vegetaci & oacute;n usando datos hist & oacute;ricos y variables influyentes. La performance de dos algoritmos del aprendizaje autom & aacute;tico, incluyendo regresiones log & iacute;sticas (LR) y bosques al azar (Random Forest, RF), para construir mapas de susceptibilidad a los incendios, fue evaluado en regiones con diferentes caracter & iacute;sticas f & iacute;sicas (la regi & oacute;n de Okanogan en los EEUU y la de Jam & eacute;sie en Canad & aacute;). Los inputs del modelo fueron once variables f & iacute;sicamente relacionadas y cuyos resultados fueron las probabilidades de incendios.ResultadosLos resultados indican que las variables m & aacute;s importantes en esas dos & aacute;reas son la cobertura vegetal, la temperatura, el viento, la elevaci & oacute;n, la precipitaci & oacute;n, y el NDVI (Indice Normalizado de Vegetaci & oacute;n). Adicionalmente, los resultados revelan que ambos modelos tienen la capacidad de generar espacial y temporalmente la predicci & oacute;n de la probabilidad anual de la ocurrencia de incendios en tiempos y ubicaciones diferentes. Generalmente, el RF excede al modelo LR casi todos los casos. Como resultado, el modelo provee de mapas de susceptibilidad con diferentes niveles de severidad (desde muy altos a muy bajos). Los resultados tambi & eacute;n resaltan las & aacute;reas que son m & aacute;s vulnerables al fuego. Los modelos desarrollados y el an & aacute;lisis son muy valiosos para los que planifican las emergencias y, para los decisores, para identificar regiones cr & iacute;ticas e implementar acciones preventivas para la conservaci & oacute;n ecol & oacute;gica.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Using GPUs for machine learning algorithms
    Steinkraus, D
    Buck, I
    Simard, PY
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1115 - 1120
  • [42] Comparing different algorithms for the course of Alzheimer's disease using machine learning
    Tang, Xiaomu
    Liu, Jie
    ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (09) : 9715 - 9724
  • [43] Modelling Ray Tracing Propagation Data Using Different Machine Learning Algorithms
    Goudos, Sotirios K.
    Athanasiadou, Georgia
    Tsoulos, George V.
    Rekkas, Vasileios
    2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
  • [44] Spatial mapping Zataria multiflora using different machine-learning algorithms
    Edalat, Mohsen
    Dastres, Emran
    Jahangiri, Enayat
    Moayedi, Gholamreza
    Zamani, Afshin
    Pourghasemi, Hamid Reza
    Tiefenbacher, John P.
    CATENA, 2022, 212
  • [45] An empirical comparison of fake news detection using different machine learning algorithms
    Albahr A.
    Albahar M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 146 - 152
  • [46] Sentiment Analysis on Reviews of Amazon Products Using Different Machine Learning Algorithms
    Tasci, Merve Esra
    Rasheed, Jawad
    Ozkul, Tarik
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 2, FONES-AIOT 2024, 2024, 1036 : 318 - 327
  • [47] Predicting world electricity generation by sources using different machine learning algorithms
    Ozdemir, Mehmet Hakan
    Aylak, Batin Latif
    Ince, Murat
    Oral, Okan
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2024, 35 (01) : 98 - 115
  • [48] Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
    Al-Mashhadany, Sufyan A.
    Hasan, Haider Ali
    Al-Sammarraie, Mustafa A. J.
    JOURNAL OF ECOLOGICAL ENGINEERING, 2024, 25 (06): : 231 - 238
  • [49] Detection and Defense Algorithms of Different Types of DDoS Attacks Using Machine Learning
    Yusof, Mohd Azahari Mohd
    Ali, Fakariah Hani Mohd
    Darus, Mohamad Yusof
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, ICCST 2017, 2018, 488 : 370 - 379
  • [50] Futuristic Approach for Intelligent Cognitive Radio Using Different Machine Learning Algorithms
    Motta, Megha
    Banerjee, Partha Sarathy
    Sharma, Deepak
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 464 - 476