Wildfire assessment using machine learning algorithms in different regions

被引:0
|
作者
Moghim, Sanaz [1 ]
Mehrabi, Majid [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Azadi Ave, Tehran, Iran
来源
FIRE ECOLOGY | 2024年 / 20卷 / 01期
基金
美国海洋和大气管理局;
关键词
Wildfire; Fire regime; Machine learning; Random forest; Logistic regression; Fire Susceptibility map; Conservation ecology; SUPPORT VECTOR MACHINE; FOREST-FIRE DANGER; LOGISTIC-REGRESSION; SPATIAL-PATTERN; CLIMATE-CHANGE; BOREAL FOREST; SUSCEPTIBILITY; CANADA; PREDICTION; PROVINCE;
D O I
10.1186/s42408-024-00335-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
BackgroundClimate change and human activities are two main forces that affect the intensity, duration, and frequency of wildfires, which can lead to risks and hazards to the ecosystems. This study uses machine learning (ML) as an effective tool for predicting wildfires using historical data and influential variables. The performance of two machine learning algorithms, including logistic regression (LR) and random forest (RF), to construct wildfire susceptibility maps is evaluated in regions with different physical features (Okanogan region in the US and Jam & eacute;sie region in Canada). The models' inputs are eleven physically related variables to output wildfire probabilities.ResultsResults indicate that the most important variables in both areas are land cover, temperature, wind, elevation, precipitation, and normalized vegetation difference index. In addition, results reveal that both models have temporal and spatial generalization capability to predict annual wildfire probability at different times and locations. Generally, the RF outperforms the LR model in almost all cases. The outputs of the models provide wildfire susceptibility maps with different levels of severity (from very high to very low). Results highlight the areas that are more vulnerable to fire. The developed models and analysis are valuable for emergency planners and decision-makers in identifying critical regions and implementing preventive action for ecological conservation. AntecedentesEl cambio clim & aacute;tico y las actividades humanas son dos de las fuerzas principales que afectan la intensidad, duraci & oacute;n, y frecuencia de los incendios, lo que puede conducir a riesgos e incertidumbres en los ecosistemas. Este estudio us & oacute; la t & eacute;cnica de aprendizaje autom & aacute;tico (machine learning) como una herramienta efectiva para predecir incendios de vegetaci & oacute;n usando datos hist & oacute;ricos y variables influyentes. La performance de dos algoritmos del aprendizaje autom & aacute;tico, incluyendo regresiones log & iacute;sticas (LR) y bosques al azar (Random Forest, RF), para construir mapas de susceptibilidad a los incendios, fue evaluado en regiones con diferentes caracter & iacute;sticas f & iacute;sicas (la regi & oacute;n de Okanogan en los EEUU y la de Jam & eacute;sie en Canad & aacute;). Los inputs del modelo fueron once variables f & iacute;sicamente relacionadas y cuyos resultados fueron las probabilidades de incendios.ResultadosLos resultados indican que las variables m & aacute;s importantes en esas dos & aacute;reas son la cobertura vegetal, la temperatura, el viento, la elevaci & oacute;n, la precipitaci & oacute;n, y el NDVI (Indice Normalizado de Vegetaci & oacute;n). Adicionalmente, los resultados revelan que ambos modelos tienen la capacidad de generar espacial y temporalmente la predicci & oacute;n de la probabilidad anual de la ocurrencia de incendios en tiempos y ubicaciones diferentes. Generalmente, el RF excede al modelo LR casi todos los casos. Como resultado, el modelo provee de mapas de susceptibilidad con diferentes niveles de severidad (desde muy altos a muy bajos). Los resultados tambi & eacute;n resaltan las & aacute;reas que son m & aacute;s vulnerables al fuego. Los modelos desarrollados y el an & aacute;lisis son muy valiosos para los que planifican las emergencias y, para los decisores, para identificar regiones cr & iacute;ticas e implementar acciones preventivas para la conservaci & oacute;n ecol & oacute;gica.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Early wildfire detection using different machine learning algorithms
    Moradi, Sina
    Hafezi, Mohadeseh
    Sheikhi, Aras
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [2] Wildfire susceptibility mapping using two empowered machine learning algorithms
    Hossein Moayedi
    Mohammad Ali Salehi Amin Khasmakhi
    Stochastic Environmental Research and Risk Assessment, 2023, 37 : 49 - 72
  • [3] Wildfire susceptibility mapping using two empowered machine learning algorithms
    Moayedi, Hossein
    Khasmakhi, Mohammad Ali Salehi Amin
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (01) : 49 - 72
  • [4] Machine learning methods for wildfire risk assessment
    Brys, Carlos
    Martinez, David Luis La Red
    Marinelli, Marcelo
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [5] USING MACHINE LEARNING ALGORITHMS FOR NATURAL HABITATS ASSESSMENT
    Marian, Monica Liliana
    Nasui, Daniel
    Ghise, Ciprian Radu
    Popovici, Flavia
    Sabo, Cosmin
    Mare, Rosca Oana
    Mihalescu, Lucia
    Vasilescu, Bogdan
    Vosgan, Zorica
    CARPATHIAN JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCES, 2024, 19 (01): : 103 - 113
  • [6] Reliability Assessment of Tunnels Using Machine Learning Algorithms
    Ajeet Kumar Verma
    Anindya Pain
    Ekansh Agarwal
    Debasish Pradhan
    Indian Geotechnical Journal, 2022, 52 : 780 - 798
  • [7] Credit Risk Assessment Using Machine Learning Algorithms
    Attigeri, Girija V.
    Pai, M. M. Manohara
    Pai, Radhika M.
    ADVANCED SCIENCE LETTERS, 2017, 23 (04) : 3649 - 3653
  • [8] Surgical skill assessment using machine learning algorithms
    Lavanchy, J. L.
    Zindel, J.
    Kirtac, K.
    Twick, I.
    Hosgor, E.
    Candinas, D.
    Beldi, G.
    BRITISH JOURNAL OF SURGERY, 2021, 108 : 30 - 30
  • [9] Reliability Assessment of Tunnels Using Machine Learning Algorithms
    Verma, Ajeet Kumar
    Pain, Anindya
    Agarwal, Ekansh
    Pradhan, Debasish
    INDIAN GEOTECHNICAL JOURNAL, 2022, 52 (04) : 780 - 798
  • [10] Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance
    Alsariera, Yazan A.
    Baashar, Yahia
    Alkawsi, Gamal
    Mustafa, Abdulsalam
    Alkahtani, Ammar Ahmed
    Ali, Nor'ashikin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022