THE RIBBON ELEMENTS OF DRINFELD DOUBLE OF RADFORD HOPF ALGEBRA

被引:0
|
作者
Sun, Hua [1 ]
Zhang, Yuyan [1 ]
Li, Libin [1 ]
机构
[1] College of Mathematical Science, Yangzhou University, Yangzhou,225002, China
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Algebra
引用
收藏
相关论文
共 50 条
  • [31] A note on ribbon elements of Hopf group-coalgebras
    Department of Mathematics, Southeast University, Nanjing
    211189, China
    J. Southeast Univ. Engl. Ed., 2 (294-296):
  • [32] The Hopf algebra structure on a double crossproduct
    Zhao, WZ
    Wang, SH
    Jiao, ZM
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (02) : 467 - 476
  • [33] On the Drinfeld Center of the Category of Comodules over a Co-quasitriangular Hopf Algebra
    Zhu, Haixing
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 263 - 275
  • [34] WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS
    Shen, Bing-Liang
    Wang, Shuan-Hong
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2009, 6 : 74 - 94
  • [35] A GENERALIZED DOUBLE CROSSPRODUCT FOR MONOIDAL HOM-HOPF ALGEBRAS AND THE DRINFELD DOUBLE
    You, Miman
    Wang, Shuanhong
    COLLOQUIUM MATHEMATICUM, 2017, 146 (02) : 213 - 238
  • [36] (θ, ω)-Twisted Radford's Hom-biproduct and π-Yetter-Drinfeld modules for Hom-Hopf algebras
    Fang, Xiao-Li
    Kim, Tae-Hwa
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [37] On the ideals of the Radford Hopf algebras
    Wang, Yu
    Zheng, Ying
    Li, Libin
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4109 - 4122
  • [38] Modular invariant Frobenius algebras from ribbon Hopf algebra automorphisms
    Fuchs, Jurgen
    Schweigert, Christoph
    Stigner, Carl
    JOURNAL OF ALGEBRA, 2012, 363 : 29 - 72
  • [39] HEISENBERG DOUBLE H(B*) AS A BRAIDED COMMUTATIVE YETTER-DRINFELD MODULE ALGEBRA OVER THE DRINFELD DOUBLE
    Semikhatov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1883 - 1906
  • [40] Algebras Graded by Discrete Doi–Hopf Data and the Drinfeld Double of a Hopf Group-Coalgebra
    Daniel Bulacu
    Stefaan Caenepeel
    Algebras and Representation Theory, 2013, 16 : 155 - 192