Asymmetric Sidelobe Suppression Array With Amplitude-Phase Controllable Metasurface

被引:1
|
作者
Li, Jinkai [1 ]
Yin, Jiao [1 ]
Zhai, Huiqing [1 ]
Cai, Yuanming [1 ]
Guo, Chaozong [1 ]
Chen, Teyan [2 ]
Xu, Wenwei [2 ]
机构
[1] Xidian Univ, Natl Key Lab Antennas & Microwave Technol, Xian 710071, Peoples R China
[2] Huawei Technol Co Ltd, Inst Strateg Res, Shenzhen 518129, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 10期
基金
中国国家自然科学基金;
关键词
Metasurfaces; Phased arrays; Base stations; Satellites; Microstrip antenna arrays; Matlab; Array signal processing; Base station array; beam scanning; beamforming; controllable metasurface; low profile; sidelobe level (SLL); FEED NETWORK; ANTENNA; SERIES;
D O I
10.1109/LAWP.2024.3408802
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a new approach to beamforming of an array is proposed, which uses a single-layer metasurface with controllable amplitude and phase to adjust the transmitted wave of each array element to achieve unilateral suppression of the sidelobe levels (SLLs). To meet the demanding sidelobe suppression requirement, an optimized distribution solved by the genetic algorithm has been fixed on the metasurface. Importantly, the proposed array can maintain a robust sidelobe suppression in large-angle beam scanning while having an extremely low profile. A +/- 45 degrees dual-polarized base station array with targeted sidelobe suppression is implemented to verify its practicality in wireless communication, the experimental results are in good agreement with the simulation ones. The simulated and measured peak SLLs are -30 dB and -27 dB, respectively. All these experimental results demonstrate the proposed method provides a reliable and concise alternative scheme for beamforming arrays.
引用
收藏
页码:2830 / 2834
页数:5
相关论文
共 50 条
  • [21] Low-Profile Beam-Steering Metasurface Lens Antenna Utilizing Defocused Array Feed Without Amplitude-Phase Network
    Fu, Zi-Hao
    Yang, Xue-Song
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (12)
  • [22] LINEAR AMPLITUDE-PHASE MODULATION
    CHEKCHEYEV, SA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1991, 34 (03): : 106 - 109
  • [23] A MODEL OF AMPLITUDE-PHASE CONVERSION
    CHISTYAKOV, NI
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1979, 33-4 (10) : 82 - 83
  • [24] The amplitude-phase relationship revisited
    Kristensen, L. K.
    Dohrup, P.
    Planetary and Space Science, 45 (07):
  • [25] The amplitude-phase relationship revisited
    Kristensen, LK
    Dohrup, P
    PLANETARY AND SPACE SCIENCE, 1997, 45 (07) : 751 - 755
  • [26] Asymmetric optical image encryption based on an improved amplitude-phase retrieval algorithm
    Wang, Y.
    Quan, C.
    Tay, C. J.
    OPTICS AND LASERS IN ENGINEERING, 2016, 78 : 8 - 16
  • [27] Optical Beamforming System Based on Polarization Manipulation With Amplitude-Phase Coupling Suppression
    Xu, Shangzhe
    Wang, Xiangchuan
    Yang, Yue
    Ma, Cong
    Liu, Xi
    Wang, Lihan
    Jiang, Xin
    Ye, Xingwei
    Pan, Shilong
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (05) : 2215 - 2221
  • [28] Programmable metasurface with amplitude-phase joint modulation based on multi-layer stacking strategy
    Yang, Huiping
    Yang, Junbo
    Wu, Jiagui
    OPTICS COMMUNICATIONS, 2025, 574
  • [29] SMALL PHASED-ARRAY CONTROL ACCORDING TO PREDETERMINED AMPLITUDE-PHASE DISTRIBUTION
    RYAPOLOV, VV
    FIDORENKO, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (09): : 1132 - 1136
  • [30] Analysis of Amplitude-phase Error of Phased Array Calibration in Mid-field
    Gu, Qiang
    Dai, Chengran
    Zhang, Chuanfang
    Yuan, Haopeng
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 280 - 283