Optically Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging

被引:0
|
作者
Raad, Jaime Parra [1 ]
Lock, Daniel [1 ]
Liu, Yi-Yi [1 ]
Solomon, Mark [1 ]
Peralta, Laura [2 ]
Christensen-Jeffries, Kirsten [1 ]
机构
[1] Kings Coll London, Dept Biomed Engn & Imaging Sci, London WC2R 2LS, England
[2] Kings Coll London, Dept Surg & Intervent Engn, London WC2R 2LS, England
基金
英国医学研究理事会;
关键词
Phantoms; Optical imaging; Optical device fabrication; Optical variables control; Optical variables measurement; Imaging; Ultrasonic imaging; Three-dimensional displays; Optical diffraction; Optical recording; Contrast enhanced ultrasound (US) imaging; microfluid chip; microvascular phantom; super-resolution US (SRUS) imaging; tissue-mimicking material; US localization microscopy; US phantom; vascular phantom; TISSUE-MIMICKING PHANTOM; MODEL;
D O I
10.1109/TUFFC.2024.3484770
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Super-resolution ultrasound (SRUS) visu-Microvascular Phantom alises microvasculature beyond the ultrasound diffraction limit (wavelength (lambda)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 mu m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to similar to 60 mu m(lambda/5.8; lambda=similar to 350 mu m ). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 mu m(lambda/22) with a standard deviation error of 11.44 mu m. The average error decreased to 7.93 mu m(lambda/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
引用
收藏
页码:1833 / 1843
页数:11
相关论文
共 50 条
  • [1] Microvascular Imaging with Super-Resolution Ultrasound
    Andersen, Sofie Bech
    Sorensen, Charlotte Mehlin
    Jensen, Jorgen Arendt
    Nielsen, Michael Bachmann
    ULTRASCHALL IN DER MEDIZIN, 2022, 43 (06): : 543 - 547
  • [2] Ultrasound Microvascular Imaging Based on Super-Resolution Radial Fluctuations
    Zhang, Jiabin
    Li, Nan
    Dong, Feihong
    Liang, Shuyuan
    Wang, Di
    An, Jian
    Long, Yunfei
    Wang, Yuexiang
    Luo, Yukun
    Zhang, Jue
    JOURNAL OF ULTRASOUND IN MEDICINE, 2020, 39 (08) : 1507 - 1516
  • [3] Super-resolution ultrasound microvascular imaging: Is it ready for clinical use?
    Song, Pengfei
    Rubin, Jonathan M.
    Lowerison, Matthew R.
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2023, 33 (03): : 309 - 323
  • [4] Super-Resolution Imaging With Ultrafast Ultrasound Imaging of Optically Triggered Perfluorohexane Nanodroplets
    Yoon, Heechul
    Hallam, Kristina A.
    Yoon, Changhan
    Emelianov, Stanislav Y.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) : 2277 - 2285
  • [5] SUPER-RESOLUTION ULTRASOUND IMAGING
    Christensen-Jeffries, Kirsten
    Couture, Olivier
    Dayton, Paul A.
    Eldar, Yonina C.
    Hynynen, Kullervo
    Kiessling, Fabian
    O'Reilly, Meaghan
    Pinton, I. Gianmarco F.
    Schmitz, Georg
    Tang, Meng-Xing
    Tanter, Mickael
    Van Sloun, Ruud J. G.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04): : 865 - 891
  • [6] Super-resolution Ultrasound Microvascular Angiography for Spinal Cord Penumbra Imaging
    Yu, Junjin
    Dong, Haoru
    Ta, Dean
    Xie, Rong
    Xu, Kailiang
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (09): : 2140 - 2151
  • [7] A High-Efficiency Super-Resolution Reconstruction Method for Ultrasound Microvascular Imaging
    Guo, Wei
    Tong, Yusheng
    Huang, Yurong
    Wang, Yuanyuan
    Yu, Jinhua
    APPLIED SCIENCES-BASEL, 2018, 8 (07):
  • [8] Mapping of prostate cancer microvascular patterns using super-resolution ultrasound imaging
    Butler, Mairead B.
    Papageorgiou, Georgios
    Kanoulas, Evangelos D.
    Voulgaridou, Vasiliki
    Wijkstra, Hessel
    Mischi, Massimo
    Mannaerts, Christophe K.
    Mcdougall, Steven
    Duncan, William Colin
    Lu, Weiping
    Sboros, Vassilis
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2025, 9 (01)
  • [9] IMAGING TECHNIQUES Super-resolution ultrasound
    Cox, Ben
    Beard, Paul
    NATURE, 2015, 527 (7579) : 451 - 452
  • [10] Axial Super-Resolution in Ultrasound Imaging
    Shastri, Saurav Kumaraswami
    Rudresh, Sunil
    Anand, Ramkumar
    Nagesh, Sudarshan
    Mazumder, Dibbyan
    Thittai, Arun K.
    Seelamantula, Chandra Sekhar
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 639 - 642