Exploring Inherent Consistency for Semi-Supervised Anatomical Structure Segmentation in Medical Imaging

被引:2
|
作者
Huang, Wei [1 ,2 ]
Zhang, Lei [1 ,2 ]
Wang, Zizhou [3 ]
Wang, Lituan [1 ,2 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Image segmentation; Anatomical structure; Task analysis; Biomedical imaging; Data models; Training; Predictive models; Semi-supervised learning; medical image segmentation; inherent consistency; anatomical prior information; NETWORK;
D O I
10.1109/TMI.2024.3400840
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to the exorbitant expense of obtaining labeled data in the field of medical image analysis, semi-supervised learning has emerged as a favorable method for the segmentation of anatomical structures. Although semi-supervised learning techniques have shown great potential in this field, existing methods only utilize image-level spatial consistency to impose unsupervised regularization on data in label space. Considering that anatomical structures often possess inherent anatomical properties that have not been focused on in previous works, this study introduces the inherent consistency into semi-supervised anatomical structure segmentation. First, the prediction and the ground-truth are projected into an embedding space to obtain latent representations that encapsulate the inherent anatomical properties of the structures. Then, two inherent consistency constraints are designed to leverage these inherent properties by aligning these latent representations. The proposed method is plug-and-play and can be seamlessly integrated with existing methods, thereby collaborating to improve segmentation performance and enhance the anatomical plausibility of the results. To evaluate the effectiveness of the proposed method, experiments are conducted on three public datasets (ACDC, LA, and Pancreas). Extensive experimental results demonstrate that the proposed method exhibits good generalizability and outperforms several state-of-the-art methods.
引用
收藏
页码:3731 / 3741
页数:11
相关论文
共 50 条
  • [21] Semi-supervised Medical Image Segmentation through Dual-task Consistency
    Luo, Xiangde
    Chen, Jieneng
    Song, Tao
    Wang, Guotai
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8801 - 8809
  • [22] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [23] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [24] SEMI-SUPERVISED SEMANTIC SEGMENTATION CONSTRAINED BY CONSISTENCY REGULARIZATION
    Li, Xiaoqiang
    He, Qin
    Dai, Songmin
    Wu, Pin
    Tong, Weiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [25] Semi-supervised Tubular Structure Segmentation with Cross Geometry and Hausdorff Distance Consistency
    Zhu, Ruiyun
    Oda, Masahiro
    Hayashi, Yuichiro
    Kitasaka, Takayuki
    Mori, Kensaku
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 612 - 622
  • [26] Dual consistency semi-supervised learning for 3D medical image segmentation
    Wei, Lin
    Sha, Runxuan
    Shi, Yucheng
    Wang, Qingxian
    Shi, Lei
    Gao, Yufei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [27] Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation
    Zhang, Yichi
    Jiao, Rushi
    Liao, Qingcheng
    Li, Dongyang
    Zhang, Jicong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 138
  • [28] Semi-supervised Medical Image Segmentation with Strong/Weak Task-Aware Consistency
    Wang, Hua
    Liu, Linwei
    Lin, Yiming
    Hu, Jingfei
    Zhang, Jicong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 17 - 31
  • [29] Multi-consistency for semi-supervised medical image segmentation via diffusion models
    Chen, Yunzhu
    Liu, Yang
    Lu, Manti
    Fu, Liyao
    Yang, Feng
    PATTERN RECOGNITION, 2025, 161
  • [30] Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation
    Miao, Juzheng
    Chen, Cheng
    Zhang, Keli
    Chuai, Jie
    Li, Quanzheng
    Heng, Pheng-Ann
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XI, 2024, 15011 : 167 - 177