Using Machine Learning for Detection and Prediction of Chronic Diseases

被引:0
|
作者
Yanes, Nacim [1 ,2 ]
Jamel, Leila [3 ]
Alabdullah, Bayan [3 ]
Ezz, Mohamed [4 ]
Mohamed Mostafa, Ayman [4 ]
Shabana, Hossameldeen [5 ]
机构
[1] Manouba Univ, RIADI Lab, Manouba 2010, Tunisia
[2] Gabes Univ, Higher Inst Management Gabes, Gabes 6033, Tunisia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[4] Jouf Univ, Coll Comp & Informat Sci, Sakaka 72388, Saudi Arabia
[5] Shaqra Univ, Coll Med, Shaqra 11961, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Predictive models; Accuracy; Cardiac arrest; Diseases; Heart; Medical services; Data models; Prediction algorithms; Classification algorithms; Tuning; Heart attack prediction; ensemble model; chronic diseases; class imbalance; ML classifiers; model transparency;
D O I
10.1109/ACCESS.2024.3494839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heart attacks are a leading cause of mortality worldwide, necessitating the development of accurate predictive models to enhance early detection and intervention strategies. This study addresses the significant problem of class imbalance in medical datasets, specifically focusing on heart attack prediction using the Behavioral Risk Factor Surveillance System (BRFSS) dataset. To tackle this challenge, advanced machine learning (ML) methods are proposed to involve a refined dataset of 399,875 instances, with 47 significant features maintained through rigorous data cleaning and preparation. Balanced accuracy and macro-recall were chosen as primary metrics to ensure fair performance evaluation across classes in the imbalanced dataset. Our proposed system entails a detailed evaluation of various algorithms known for their effectiveness in managing class imbalance. The LGBM Classifier, XGB Classifier, and Logistic Regression (LR) are optimized using recursive feature elimination and hyperparameter tuning with Optuna. The results of this study are encapsulated in an ensemble model that significantly enhances predictive accuracy. The final model achieved 80.75% balanced accuracy and 79.97% recall for critical heart attack cases (class 1), along with an AUC score of 88.9%, indicating superior class distinction capability. Additionally, the application of SHAP (SHapley Additive exPlanations) analysis provided valuable insights into the contribution of each feature to heart attack likelihood, thus improving model transparency. This study's successful integration of complex ML techniques with interpretability analyses like SHAP marks a substantial advance in early detection and intervention strategies in healthcare. It demonstrates the potential of sophisticated ML approaches for early heart attack detection and prevention, highlighting their value in improving outcomes for patients with chronic diseases. These findings suggest promising pathways for employing advanced analytical tools in healthcare to enhance patient care.
引用
收藏
页码:177674 / 177691
页数:18
相关论文
共 50 条
  • [31] Detection of antibodies in suspected autoimmune encephalitis diseases using machine learning
    Musigmann, Manfred
    Spiekers, Christine
    Stake, Jacob
    Akkurt, Burak Han
    Mora, Nabila Gala Nacul
    Sartoretti, Thomas
    Heindel, Walter
    Mannil, Manoj
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Detection and Classification of Olive Leaves Diseases Using Machine Learning Algorithms
    Dammak, Mouna
    Makhloufi, Achraf
    Louati, Badii
    Kallel, Abdelaziz
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, ICCCI 2024, 2024, 14810 : 292 - 304
  • [33] A Systematic Review on the Detection and Classification of Plant Diseases Using Machine Learning
    Munjal, Deepkiran
    Singh, Laxman
    Pandey, Mrinal
    Lakra, Sachin
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2023, 11 (01) : 27 - 27
  • [34] A Survey on Different Plant Diseases Detection Using Machine Learning Techniques
    Hassan, Sk Mahmudul
    Amitab, Khwairakpam
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    Novak, Tomas
    Maji, Arnab Kumar
    ELECTRONICS, 2022, 11 (17)
  • [35] A comprehensive review for chronic disease prediction using machine learning algorithms
    Rakibul Islam
    Azrin Sultana
    Mohammad Rashedul Islam
    Journal of Electrical Systems and Information Technology, 11 (1)
  • [36] Chronic Kidney Disease Prediction using Machine Learning Ensemble Algorithm
    Nikhila
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 476 - 480
  • [37] Prediction of Healing Trajectory of Chronic Wounds Using a Machine Learning Approach
    Dallmann, Anissa C.
    Sheridan, Mary
    Mattke, Soeren
    Ennis, William
    ADVANCES IN WOUND CARE, 2024,
  • [38] Symptom-based drug prediction of lifestyle-related chronic diseases using unsupervised machine learning techniques
    Bhattacharjee S.
    Saha B.
    Saha S.
    Computers in Biology and Medicine, 2024, 174
  • [39] Detection and Classification of Banana Leaf diseases using Machine Learning and Deep Learning Algorithms
    Vidhya, N. P.
    Priya, R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [40] Detection of Cardiovascular Diseases in ECG Images Using Machine Learning and Deep Learning Methods
    Abubaker M.B.
    Babayigit B.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (02): : 373 - 382