Explainable AI-based innovative hybrid ensemble model for intrusion detection

被引:1
|
作者
Ahmed, Usman [1 ]
Zheng, Jiangbin [1 ]
Almogren, Ahmad [2 ]
Khan, Sheharyar [1 ]
Sadiq, Muhammad Tariq [3 ,4 ]
Altameem, Ayman [5 ]
Rehman, Ateeq Ur [6 ]
机构
[1] Northwestern Polytech Univ, Sch Software, Xian 710072, Peoples R China
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11633, Saudi Arabia
[3] Univ Essex, Sch Comp Sci & Elect Engn, Colchester Campus, Colchester, England
[4] Appl Sci Private Univ, Appl Sci Res Ctr, Amman, Jordan
[5] King Saud Univ, Coll Appl Studies & Community Serv, Dept Nat & Engn Sci, Riyadh 11543, Saudi Arabia
[6] Gachon Univ, Sch Comp, Seongnam Si 13120, South Korea
关键词
Stacking ensemble; Bayesian model averaging; Conditional ensemble method; Machine learning; Explainable AI; Network security; Intrusion detection; DETECTION SYSTEMS; ARCHITECTURE; IDS;
D O I
10.1186/s13677-024-00712-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cybersecurity threats have become more worldly, demanding advanced detection mechanisms with the exponential growth in digital data and network services. Intrusion Detection Systems (IDSs) are crucial in identifying illegitimate access or anomalous behaviour within computer network systems, consequently opposing sensitive information. Traditional IDS approaches often struggle with high false positive rates and the ability to adapt embryonic attack patterns. This work asserts a novel Hybrid Adaptive Ensemble for Intrusion Detection (HAEnID), an innovative and powerful method to enhance intrusion detection, different from the conventional techniques. HAEnID is composed of a string of multi-layered ensemble, which consists of a Stacking Ensemble (SEM), a Bayesian Model Averaging (BMA), and a Conditional Ensemble method (CEM). HAEnID combines the best of these three ensemble techniques for ultimate success in detection with a considerable cut in false alarms. A key feature of HAEnID is an adaptive mechanism that allows ensemble components to change over time as network traffic patterns vary and new threats appear. This way, HAEnID would provide adequate protection as attack vectors change. Furthermore, the model would become more interpretable and explainable using Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). The proposed Ensemble model for intrusion detection on CIC-IDS 2017 achieves excellent accuracy (97-98%), demonstrating effectiveness and consistency across various configurations. Feature selection further enhances performance, with BMA-M (20) reaching 98.79% accuracy. These results highlight the potential of the ensemble model for accurate and reliable intrusion detection and, hence, is a state-of-the-art choice for accuracy and explainability.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] An enhanced AI-based model for financial fraud detection
    Ali, Ahmed H.
    Hagag, Ahmed Ali
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2024, 11 (10): : 114 - 121
  • [32] Enhancing Intrusion Detection Systems With Advanced Machine Learning Techniques: An Ensemble and Explainable Artificial Intelligence (AI) Approach
    Alatawi, Mohammed Naif
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [33] Leveraging Explainable AI for Actionable Insights in IoT Intrusion Detection
    Gyawali, Sohan
    Huang, Jiaqi
    Jiang, Yili
    2024 19TH ANNUAL SYSTEM OF SYSTEMS ENGINEERING CONFERENCE, SOSE 2024, 2024, : 92 - 97
  • [34] A survey of intrusion detection systems based on ensemble and hybrid classifiers
    Aburomman, Abdulla Amin
    Reaz, Mamun Bin Ibne
    COMPUTERS & SECURITY, 2017, 65 : 135 - 152
  • [35] Research of Intrusion Detection based on Ensemble Learning Model
    Li Yang
    Li Jianlin
    Yue Songjie
    Wang Zhi
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 2376 - 2380
  • [36] An AI-Based Hybrid Forecasting Model for Wind Speed Forecasting
    Lu, Haiyan
    Heng, Jiani
    Wang, Chen
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 221 - 230
  • [37] RETRACTION: FireXnet: an explainable AI-based tailored deep learning model for wildfire detection on resource-constrained devices
    Ahmad, Khubab
    Khan, Muhammad Shahbaz
    Ahmed, Fawad
    Driss, Maha
    Boulila, Wadii
    Alazeb, Abdulwahab
    Alsulami, Mohammad
    Alshehri, Mohammed S.
    Ghadi, Yazeed Yasin
    Ahmad, Jawad
    FIRE ECOLOGY, 2024, 20 (01):
  • [38] Explainable AI model for PDFMal detection based on gradient boosting model
    Elattar, Mona
    Younes, Ahmed
    Gad, Ibrahim
    Elkabani, Islam
    Neural Computing and Applications, 2024, 36 (34) : 21607 - 21622
  • [39] A Hybrid Approach for an Interpretable and Explainable Intrusion Detection System
    Dias, Tiago
    Oliveira, Nuno
    Sousa, Norberto
    Praca, Isabel
    Sousa, Orlando
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1035 - 1045
  • [40] An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks
    Park, Cheolhee
    Lee, Jonghoon
    Kim, Youngsoo
    Park, Jong-Geun
    Kim, Hyunjin
    Hong, Dowon
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (03) : 2330 - 2345