Design strategies and performance enhancements of PVDF-based flexible electrolytes for high-performance all-solid-state lithium metal batteries

被引:0
|
作者
Liu, Zhongxiu [1 ,2 ,3 ]
Islam, Md Shariful [4 ]
Fang, Yuhui [5 ]
Zhu, Meifang [1 ]
Cao, Changyong [4 ,6 ]
Xu, Guiyin [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Henan Acad Sci, Zhengzhou 450001, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[4] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Lab Soft Machines & Elect, Cleveland, OH 44106 USA
[5] 4D Maker LLC, Okemos, MI 44106 USA
[6] Louis Stokes Cleveland VA Med Ctr, Adv Platform Technol APT Ctr, Cleveland, OH 44106 USA
基金
中国国家自然科学基金;
关键词
All Open Access; Hybrid Gold;
D O I
10.1039/d4nr04583a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal is considered one of the most promising anode materials for lithium batteries due to its high theoretical specific capacity (3860 mA h g-1) and low redox potential (-3.04 V). However, uncontrolled lithium dendrite growth and severe interfacial side reactions during cycling result in poor performance and safety risks, significantly limiting its practical applications. Replacing liquid electrolytes with solid polymer electrolytes (SPEs) offers a solution, as SPEs provide flexibility and good electrode compatibility, effectively inhibiting dendrite growth and reducing interfacial reactions. Among SPEs, poly(vinylidene fluoride) (PVDF)-based solid electrolytes offer excellent thermal stability and mechanical strength, making them highly suitable for high-energy-density flexible batteries. This review presents recent advances in PVDF-based solid-state electrolytes (SSEs) for stable, high-performance lithium metal batteries (LMBs). We focus on modification strategies that enhance the performance of PVDF-based SSEs in solid-state LMBs and highlight how synthesis methods, nano/microstructural design, and electrochemical properties are interrelated. Lastly, we discuss the challenges and prospects for PVDF-based SSEs in next-generation high-performance LMBs.
引用
收藏
页码:2408 / 2422
页数:15
相关论文
共 50 条
  • [41] High-Performance All-Solid-State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites
    Huang, Jun
    Cheng, Lei
    Zhang, Zhenyang
    Li, Chen
    Bang, Ki-Taek
    Liem, Albert
    Luo, Hang
    Hu, Chuan
    Lee, Young Moo
    Lu, Yingying
    Wang, Yanming
    Kim, Yoonseob
    ADVANCED ENERGY MATERIALS, 2024, 14 (27)
  • [42] Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of All-Solid-State Lithium Batteries
    Wang, Longlong
    Rahamim, Guy
    Vudutta, Kirankumar
    Leifer, Nicole
    Elazari, Ran
    Behar, Ilan
    Noked, Malachi
    Zitoun, David
    ENERGY TECHNOLOGY, 2023, 11 (03)
  • [43] In-Situ Construction of Ceramic-Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries
    Zhang, Lei
    Gao, Haiqi
    Xiao, Shijun
    Li, Jinyu
    Ma, Tianli
    Wang, Qian
    Liu, Wen
    Wang, Shi
    ACS MATERIALS LETTERS, 2022, 4 (07): : 1297 - 1305
  • [44] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    Energy Storage Materials, 2024, 65
  • [45] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    ENERGY STORAGE MATERIALS, 2024, 65
  • [46] Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries
    Zhang, Qiang
    Ding, Zhaoguang
    Liu, Gaozhan
    Wan, Hongli
    Mwizerwa, Jean Pierre
    Wu, Jinghua
    Yao, Xiayin
    ENERGY STORAGE MATERIALS, 2019, 23 : 168 - 180
  • [47] High Performance Lithium Metal Anode with a Nanolayer of LiZn Alloy for All-Solid-State Batteries
    Delaporte, Nicolas
    Perea, Alexis
    Collin-Martin, Steve
    Leonard, Mireille
    Matton, Julie
    Gariepy, Vincent
    Demers, Hendrix
    Clement, Daniel
    Rivard, Etienne
    Vijh, Ashok
    BATTERIES & SUPERCAPS, 2022, 5 (10)
  • [48] Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes
    Li, Liansheng
    Duan, Huanhuan
    Li, Jia
    Zhang, Lei
    Deng, Yuanfu
    Chen, Guohua
    ADVANCED ENERGY MATERIALS, 2021, 11 (28)
  • [49] Exploring optimal cathode composite design for high-performance all-solid-state batteries
    Kim, Yoon Jun
    Hoang, Trung Dinh
    Han, Su Cheol
    Bang, Joo An
    Kang, Ho Won
    Kim, Jaehyun
    Park, Heetaek
    Park, Jun-Ho
    Park, Jun-Woo
    Park, Gumjae
    Lee, You-Jin
    Kim, Doohun
    Eom, Seung-Wook
    Choi, Jeong-Hee
    Lee, Seoung-Ki
    Moon, Janghyuk
    Ha, Yoon-Cheol
    Kim, Byung Gon
    ENERGY STORAGE MATERIALS, 2024, 71
  • [50] In-Situ Plasticized LLZTO-PVDF Composite Electrolytes for High-Performance Solid-State Lithium Metal Batteries
    Yu, Xinjie
    Zhai, Pengbo
    Zhao, Ning
    Guo, Xiangxin
    BATTERIES-BASEL, 2023, 9 (05):