Lattice-Based Homomorphic Encryption For Privacy-Preserving Smart Meter Data Analytics

被引:0
|
作者
Marandi, Ali [1 ]
Alves, Pedro Geraldo M.R. [2 ]
Aranha, Diego F. [3 ]
Jacobsen, Rune Hylsberg [4 ]
机构
[1] Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
[2] Institute of Computing, University of Campinas, Campinas, Brazil
[3] DIGIT, Department of Computer Science, Aarhus University, Aarhus, Denmark
[4] DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
来源
Computer Journal | 2024年 / 67卷 / 05期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Privacy-preserving smart meter data collection and analysis are critical for optimizing smart grid environments without compromising privacy. Using homomorphic encryption techniques, smart meters can encrypt collected data to ensure confidentiality, and other untrusted nodes can further compute over the encrypted data without having to recover the underlying plaintext. As an illustrative example, this approach can be useful to compute the monthly electricity consumption without violating consumer privacy by collecting fine-granular data through small increments of time. Toward that end, we propose an architecture for privacy-preserving smart meter data collection, aggregation and analysis based on lattice-based homomorphic encryption. Furthermore, we compare the proposed method with the Paillier and Boneh–Goh–Nissim (BGN) cryptosystems, which are popular alternatives for homomorphic encryption in smart grids. We consider different services with different requirements in terms of multiplicative depth, e.g. billing, variance and nonlinear support vector machine classification. Accordingly, we measure and show the practical overhead of using the proposed homomorphic encryption method in terms of communication traffic (ciphertext size) and latency. Our results show that lattice-based homomorphic encryption is more efficient than Paillier and BGN for both multiplication and addition operations while offering more flexibility in terms of the computation that can be evaluated homomorphically. © The British Computer Society 2023.
引用
收藏
页码:1687 / 1698
相关论文
共 50 条
  • [41] Privacy-Preserving Decentralized Optimization Using Homomorphic Encryption
    Huo, Xiang
    Liu, Mingxi
    IFAC PAPERSONLINE, 2020, 53 (05): : 630 - 633
  • [42] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [43] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [44] Approximate homomorphic encryption based privacy-preserving machine learning: a survey
    Yuan, Jiangjun
    Liu, Weinan
    Shi, Jiawen
    Li, Qingqing
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)
  • [45] A Privacy-Preserving Homomorphic Encryption Scheme for the Internet of Things
    Zouari, Jaweher
    Hamdi, Mohamed
    Kim, Tai-Hoon
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1939 - 1944
  • [46] Efficient homomorphic encryption framework for privacy-preserving regression
    Byun, Junyoung
    Park, Saerom
    Choi, Yujin
    Lee, Jaewook
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10114 - 10129
  • [47] Privacy-preserving genotype imputation with fully homomorphic encryption
    Gursoy, Gamze
    Chielle, Eduardo
    Brannon, Charlotte M.
    Maniatakos, Michail
    Gerstein, Mark
    CELL SYSTEMS, 2022, 13 (02) : 173 - +
  • [48] Privacy-preserving cancer type prediction with homomorphic encryption
    Esha Sarkar
    Eduardo Chielle
    Gamze Gursoy
    Leo Chen
    Mark Gerstein
    Michail Maniatakos
    Scientific Reports, 13
  • [49] Privacy-preserving Surveillance Methods using Homomorphic Encryption
    Bowditch, William
    Abramson, Will
    Buchanan, William J.
    Pitropakis, Nikolaos
    Hall, Adam J.
    ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 240 - 248
  • [50] Efficient homomorphic encryption framework for privacy-preserving regression
    Junyoung Byun
    Saerom Park
    Yujin Choi
    Jaewook Lee
    Applied Intelligence, 2023, 53 : 10114 - 10129