Consistent causal inference for high-dimensional time series

被引:0
|
作者
Cordoni, Francesco [1 ]
Sancetta, Alessio [1 ]
机构
[1] Royal Holloway Univ London, Dept Econ, Egham TW20 0EX, England
关键词
High-dimensional model; Identification; Nonlinear model; Structural model; Vector autoregressive process; MONETARY-POLICY; IDENTIFICATION; MODEL; RESTRICTIONS; SELECTION; GRAPHS; FACTS; VARS;
D O I
10.1016/j.jeconom.2024.105902
中图分类号
F [经济];
学科分类号
02 ;
摘要
A methodology for high-dimensional causal inference in a time series context is introduced. Time series dynamics are captured by a Gaussian copula, and estimation of the marginal distribution of the data is not required. The procedure can consistently identify the parameters that describe the dynamics of the process and the conditional causal relations among the possibly high-dimensional variables, under sparsity conditions. Identification of the causal relations is in the form of a directed acyclic graph, which is equivalent to identifying the structural VAR model for the transformed variables. As illustrative applications, we consider the impact of supply-side oil shocks on the economy and the causal relations between aggregated variables constructed from the limit order book for four stock constituents of the S&P500.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Factor Modeling for Clustering High-Dimensional Time Series
    Zhang, Bo
    Pan, Guangming
    Yao, Qiwei
    Zhou, Wang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1252 - 1263
  • [42] Threshold factor models for high-dimensional time series
    Liu, Xialu
    Chen, Rong
    JOURNAL OF ECONOMETRICS, 2020, 216 (01) : 53 - 70
  • [43] On the Modeling and Prediction of High-Dimensional Functional Time Series
    Chang, Jinyuan
    Fang, Qin
    Qiao, Xinghao
    Yao, Qiwei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [44] Test for the mean of high-dimensional functional time series
    Yang, Lin
    Feng, Zhenghui
    Jiang, Qing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 201
  • [45] Factor Models for High-Dimensional Tensor Time Series
    Chen, Rong
    Yang, Dan
    Zhang, Cun-Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 94 - 116
  • [46] Consistent inference for biased sub-model of high-dimensional partially linear model
    Gai, Yujie
    Lin, Lu
    Wang, Xiuli
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (05) : 1888 - 1898
  • [47] Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference
    Chaudhry, Aditya
    Xu, Pan
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [48] Inference in High-Dimensional Parameter Space
    O'Hare, Anthony
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (11) : 997 - 1004
  • [49] High-dimensional simultaneous inference with the bootstrap
    Dezeure, Ruben
    Buhlmann, Peter
    Zhang, Cun-Hui
    TEST, 2017, 26 (04) : 685 - 719
  • [50] ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA
    Kuelbs, Jim
    Vidyashankar, Anand N.
    ANNALS OF STATISTICS, 2010, 38 (02): : 836 - 869