Hybrid Approach for the Time-Dependent Fractional Advection-Diffusion Equation Using Conformable Derivatives

被引:1
|
作者
Soledade, Andre [1 ]
da Silva Neto, Antonio Jose [2 ]
Moreira, Davidson Martins [1 ]
机构
[1] SENAI CIMATEC, Mfg & Technol Integrated Campus, Salvador, Brazil
[2] UERJ, IPRJ, Nova Friburgo, Brazil
关键词
Fractional derivative; alpha-GILTT; anomalous diffusion; conformable derivative; air pollution; ATMOSPHERIC POLLUTANT DISPERSION; ANOMALOUS DIFFUSION; LAPLACE TRANSFORM; ANALYTICAL-MODEL; DYNAMICS; CALCULUS; SIMULATION; TURBULENCE; PROFILE; WALKS;
D O I
10.1007/s00024-024-03580-3
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Nowadays, several applications in engineering and science are considering fractional partial differential equations. However, this type of equation presents new challenges to obtaining analytical solutions, since most existing techniques have been developed for integer order differential equations. In this sense, this work aims to investigate the potential of fractional derivatives in the mathematical modeling of the dispersion of atmospheric pollutants by obtaining a semi-analytical solution of the time-dependent fractional, two-dimensional advection-diffusion equation. To reach this goal, the GILTT (Generalized Integral Laplace Transform Technique) and conformal derivative methods were combined, taking fractional parameters in the transient and longitudinal advective terms. This procedure allows the anomalous behavior in the dispersion process to be considered, resulting in a new methodology called alpha-GILTT. A statistical comparison between the traditional Copenhagen experiment dataset (moderately unstable) with the simulations from the model showed little influence on the fractional parameters under lower fractionality conditions. However, the sensitivity tests with the fractional parameters allow us to conclude that they effectively influence the dispersion of pollutants in the atmosphere, suggesting dependence on atmospheric stability.
引用
收藏
页码:3279 / 3297
页数:19
相关论文
共 50 条
  • [31] Computationally Efficient Hybrid Method for the Numerical Solution of the 2D Time Fractional Advection-Diffusion Equation
    Salama, Fouad Mohammad
    Ali, Norhashidah Hj Mohd
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2020, 5 (03) : 432 - 446
  • [32] Numerical simulation of fractional advection-diffusion equation: A method to anomalous diffusion
    Xia, Y.
    Wu, J. C.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 433 - 436
  • [33] Analytical solutions of conformable advection-diffusion equation for contaminant migration with isothermal adsorption
    Yang, Shuai
    Chen, Xiang
    Ou, Lin
    Cao, Yuan
    Zhou, Hongwei
    APPLIED MATHEMATICS LETTERS, 2020, 105 (105)
  • [34] Identifying Space-Dependent Coefficients and the Order of Fractionality in Fractional Advection-Diffusion Equation
    Maryshev, Boris
    Cartalade, Alain
    Latrille, Christelle
    Neel, Marie-Christine
    TRANSPORT IN POROUS MEDIA, 2017, 116 (01) : 53 - 71
  • [35] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Wenhui Guan
    Xuenian Cao
    Communications on Applied Mathematics and Computation, 2021, 3 : 41 - 59
  • [36] Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients
    Barth, Andrea
    Stein, Andreas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (05) : 1545 - 1578
  • [37] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Guan, Wenhui
    Cao, Xuenian
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 41 - 59
  • [38] An enriched finite element method to fractional advection-diffusion equation
    Luan, Shengzhi
    Lian, Yanping
    Ying, Yuping
    Tang, Shaoqiang
    Wagner, Gregory J.
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 181 - 201
  • [39] Analytical and Numerical Solutions of Fractional Type Advection-diffusion Equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [40] Stability of a finite volume element method for the time-fractional advection-diffusion equation
    Badr, M.
    Yazdani, A.
    Jafari, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1459 - 1471