A Modulus-Based Formulation for the Vertical Tensor Complementarity Problem

被引:0
|
作者
Zhao, Xue-Fan [1 ]
Wu, Shi-Liang [1 ,2 ]
Li, Cui-Xia [1 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Yunnan Key Lab Modern Analyt Math & Applicat, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertical tensor complementarity problem; Modulus-based formulation; Power Lipschitz tensor;
D O I
10.1007/s10957-024-02544-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a modulus-based formulation for solving vertical tensor complementarity problems (VTCP) with an arbitrary number of tensors. This formulation allows us to design the modulus-based tensor splitting iterative method to fit different number of tensors. In this context, we especially analyze the modulus-based tensor splitting iterative methods for solving VTCP with two tensors, and provide sufficient conditions in combination with the properties of the power Lipschitz tensor for their convergence. We then extend the methods to solve VTCP with any number of tensors, and study the convergence analysis under proper conditions. Finally, the proposed methods are evaluated by numerical experiments.
引用
收藏
页码:2759 / 2783
页数:25
相关论文
共 50 条
  • [31] A new kind of modulus-based matrix splitting methods for vertical linear complementarity problems
    He, Jiewen
    Vong, SeakWeng
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [32] More on matrix splitting modulus-based iterative methods for solving linear complementarity problem
    Bharat Kumar
    A. Deepmala
    A. K. Dutta
    OPSEARCH, 2023, 60 : 1003 - 1020
  • [33] More on matrix splitting modulus-based iterative methods for solving linear complementarity problem
    Kumar, Bharat
    Deepmala
    Dutta, A.
    Das, A. K.
    OPSEARCH, 2023, 60 (02) : 1003 - 1020
  • [34] Modulus-based multigrid methods for linear complementarity problems
    Bai, Zhong-Zhi
    Zhang, Li-Li
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (06)
  • [35] A TWO-STEP MODULUS-BASED MULTISPLITTING ITERATION METHOD FOR THE NONLINEAR COMPLEMENTARITY PROBLEM
    Wang, Guangbin
    Tan, Fuping
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 1954 - 1961
  • [36] Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem
    Wang, Lu-Xin
    Shen, Qin-Qin
    Cao, Yang
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023,
  • [37] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Zheng, Hua
    Zhang, Yongxiong
    Lu, Xiaoping
    Vong, Seakweng
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 711 - 729
  • [38] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Hua Zheng
    Yongxiong Zhang
    Xiaoping Lu
    Seakweng Vong
    Numerical Algorithms, 2023, 93 : 711 - 729
  • [39] Solving third-order tensor linear complementarity problems via modulus-based methods and applications
    Hu, Ting
    Liu, Dongdong
    Vong, Seak-Weng
    NUMERICAL ALGORITHMS, 2025,
  • [40] On the new modulus-based matrix splitting method for linear complementarity problem of H+-matrix
    Wu, Shi-Liang
    OPTIMIZATION LETTERS, 2023, 17 (07) : 1669 - 1678